cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222362 Decimal expansion of the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis: sqrt(2) - log(1 + sqrt(2)).

Original entry on oeis.org

5, 3, 2, 8, 3, 9, 9, 7, 5, 3, 5, 3, 5, 5, 2, 0, 2, 3, 5, 6, 9, 0, 7, 9, 3, 9, 9, 2, 2, 9, 9, 0, 5, 7, 6, 9, 5, 4, 1, 5, 1, 1, 5, 4, 7, 1, 1, 5, 3, 1, 2, 6, 6, 2, 4, 2, 3, 3, 8, 4, 1, 2, 9, 3, 3, 7, 3, 5, 5, 2, 9, 4, 2, 4, 0, 0, 8, 0, 9, 5, 1, 0, 1, 6, 6, 8, 0, 6, 4, 2, 4, 1, 7, 3, 8, 5, 5, 2, 9, 8, 7, 8, 2, 7, 4, 0, 3, 0, 0, 3
Offset: 0

Views

Author

Sylvester Reese and Jonathan Sondow, Mar 01 2013

Keywords

Comments

Just as circles are ellipses whose semi-axes are equal (and are called the radius of the circle), equilateral (or rectangular) hyperbolas are hyperbolas whose semi-axes are equal.
Just as the ratio of the area of a circle to the square of its radius is always Pi, the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis is the universal equilateral hyperbolic constant sqrt(2) - log(1 + sqrt(2)).
Note the remarkable similarity to sqrt(2) + log(1 + sqrt(2)), the universal parabolic constant A103710, which is a ratio of arc lengths rather than of areas. Lockhart (2012) says "the arc length integral for the parabola ... is intimately connected to the hyperbolic area integral ... I think it is surprising and wonderful that the length of one conic section is related to the area of another".
This constant is also the abscissa of the vertical asymptote of the involute of the logarithmic curve (starting point (1,0)). - Jean-François Alcover, Nov 25 2016

Examples

			0.532839975353552023569079399229905769541511547115312662423384129337355...
		

References

  • H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
  • P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.

Crossrefs

Programs

Formula

Sqrt(2) - arcsinh(1), also equals Integral_{1..oo} 1/(x^2*(1+x)^(1/2)) dx. - Jean-François Alcover, Apr 16 2015
Equals Integral_{x = 0..1} x^2/sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019