A222362 Decimal expansion of the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis: sqrt(2) - log(1 + sqrt(2)).
5, 3, 2, 8, 3, 9, 9, 7, 5, 3, 5, 3, 5, 5, 2, 0, 2, 3, 5, 6, 9, 0, 7, 9, 3, 9, 9, 2, 2, 9, 9, 0, 5, 7, 6, 9, 5, 4, 1, 5, 1, 1, 5, 4, 7, 1, 1, 5, 3, 1, 2, 6, 6, 2, 4, 2, 3, 3, 8, 4, 1, 2, 9, 3, 3, 7, 3, 5, 5, 2, 9, 4, 2, 4, 0, 0, 8, 0, 9, 5, 1, 0, 1, 6, 6, 8, 0, 6, 4, 2, 4, 1, 7, 3, 8, 5, 5, 2, 9, 8, 7, 8, 2, 7, 4, 0, 3, 0, 0, 3
Offset: 0
Examples
0.532839975353552023569079399229905769541511547115312662423384129337355...
References
- H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
- P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J.-F. Alcover, Asymptote of the logarithmic curve involute.
- I.N. Bronshtein, Handbook of Mathematics, 5th ed., Springer, 2007, p. 202, eq. (3.338a).
- Steven R. Finch, Mathematical Constants, Errata and Addenda, 2012, section 8.1.
- J. Pahikkala, Arc Length Of Parabola, PlanetMath.
- Sylvester Reese and Jonathan Sondow, Universal Parabolic Constant, MathWorld.
- Eric Weisstein's World of Mathematics, Rectangular hyperbola.
- Wikipedia, Equilateral hyperbola.
- Wikipedia, Universal parabolic constant.
- Index entries for transcendental numbers.
Programs
-
Magma
Sqrt(2) - Log(Sqrt(2)+1); // G. C. Greubel, Feb 02 2018
-
Maple
Digits:=100: evalf(sqrt(2)-arcsinh(1)); # Wesley Ivan Hurt, Nov 27 2016
-
Mathematica
RealDigits[Sqrt[2] - Log[1 + Sqrt[2]], 10, 111][[1]]
-
PARI
sqrt(2)-log(sqrt(2)+1) \\ Charles R Greathouse IV, Apr 18 2013
-
PARI
sqrt(2)-asinh(1) \\ Charles R Greathouse IV, Dec 04 2020
Formula
Sqrt(2) - arcsinh(1), also equals Integral_{1..oo} 1/(x^2*(1+x)^(1/2)) dx. - Jean-François Alcover, Apr 16 2015
Equals Integral_{x = 0..1} x^2/sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019
Comments