cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035009 STIRLING transform of [1,1,2,4,8,16,32,...].

Original entry on oeis.org

1, 1, 3, 11, 47, 227, 1215, 7107, 44959, 305091, 2206399, 16913987, 136823263, 1163490499, 10366252031, 96491364675, 935976996127, 9440144423875, 98800604237119, 1071092025420867, 12008090971866207, 139014305916844739, 1659578039401022079, 20405708646650507075
Offset: 0

Views

Author

Keywords

Comments

Numerators of sequence that shifts left one place under 1/2 order binomial transform. (Denominators are 2^(n-1) for n > 0.) - Franklin T. Adams-Watters, Jul 31 2005
Row sums of triangle A137597 starting (1, 3, 11, 47, 227, ...). - Gary W. Adamson, Jan 29 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n)/2^(n-1) = upper left term in M^n, M = an infinite square production matrix in which a column of (1/2, 1/2, 1/2, ...) is appended to the right of Pascal's triangle, as follows:
1, 1/2, 0, 0, 0, 0, ...
1, 1, 1/2, 0, 0, 0, ...
1, 2, 1, 1/2, 0, 0, ...
1, 3, 3, 1, 1/2, 0, ...
1, 4, 6, 4, 1, 1/2, ..., etc.
(End)
From Bruno Berselli, Mar 20 2013: (Start)
Note that, for t=A222391:
a(1)*t = Sum_{n >= 1} 1 /(Gamma(n/2)*Gamma((n+1)/2)),
a(2)*t = Sum_{n >= 1} n /(Gamma(n/2)*Gamma((n+1)/2)),
a(3)*t = Sum_{n >= 1} n^2/(Gamma(n/2)*Gamma((n+1)/2)),
a(4)*t = Sum_{n >= 1} n^3/(Gamma(n/2)*Gamma((n+1)/2)),
a(5)*t = Sum_{n >= 1} n^4/(Gamma(n/2)*Gamma((n+1)/2)),
a(6)*t = Sum_{n >= 1} n^5/(Gamma(n/2)*Gamma((n+1)/2)), etc.
(End)
Except for the initial term, the main diagonal of A129340. - Peter Bala, Apr 14 2017

Examples

			Given the production matrix M, upper left term of M^5 = a(5)/2^4 = 227/16.
		

Crossrefs

Programs

  • Maple
    A035009 := proc(n) local a,b,i;
    a := [seq(2,i=1..n-1)]; b := [seq(1,i=1..n-1)];
    exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=2,%), 10+2*n)) end:
    seq(A035009(n),n=0..19);  # Peter Luschny, Mar 30 2011
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, ceil(2^(m-1)), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    1/(2*E^2)*Sum[(i + j)^n/(i!*j!), {i, 0, Infinity}, {j, 0, Infinity}] (* Starting from the 2nd term *) (* Vladimir Reshetnikov, Dec 31 2008 *)
    Join[{1}, Table[BellB[n, 2]/2, {n, 1, 25}]] (* Vaclav Kotesovec, Jun 26 2022 *)
  • PARI
    x='x+O('x^99); Vec(serlaplace((1 + exp(2*exp(x)-2))/2)) \\ Joerg Arndt, Apr 01 2011

Formula

a(n) = (1/2)*A001861(n), n > 0.
E.g.f.: (1 + exp(2*exp(x)-2))/2. - Emeric Deutsch, Feb 09 2002
a(n+1) = 1 + 2*Sum_{j=1..n} binomial(n, j)*a(j). - Jon Perry, Apr 25 2005
Define f_1(x), f_2(x), ... such that f_1(x)=e^x and for n=2,3,... f_{n+1}(x) = (d/dx)(x*f_n(x)). Then a(n) = e^(-2)*f_n(2). - Milan Janjic, May 30 2008
G.f.: 1 + x/(Q(0) - 2*x) where Q(k) = 1 - x*(k+1)/( 1 - 2*x/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 2*x/(1 - x*(2*k+1)/(1 - x - 2*x/(1 - x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + Sum_{k>=1} 2^(k-1)*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018

A222392 Decimal expansion of Sum_{n>=1} 1/Gamma(n/2).

Original entry on oeis.org

5, 5, 7, 3, 1, 6, 9, 6, 6, 4, 3, 1, 0, 0, 3, 9, 7, 5, 3, 2, 5, 7, 9, 0, 4, 0, 4, 9, 7, 7, 5, 5, 8, 2, 4, 0, 0, 5, 3, 8, 3, 8, 5, 3, 1, 3, 5, 6, 4, 6, 6, 5, 3, 4, 3, 0, 3, 2, 4, 8, 1, 2, 0, 6, 4, 1, 8, 2, 9, 0, 3, 0, 7, 3, 2, 8, 3, 4, 5, 3, 5, 8, 4, 2, 2, 4, 5
Offset: 1

Views

Author

Bruno Berselli, Mar 19 2013

Keywords

Examples

			5.57316966431003975325790404977558240053838531356466534303248120641829030...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:5:12 at page 415.

Crossrefs

Cf. A222391.
Cf. A001113, (Sum_{n>=1} 1/Gamma(n)).

Programs

  • Mathematica
    RealDigits[(1 + Erf[1]) E + 1/Sqrt[Pi], 10, 90][[1]]

Formula

Equals (1+erf(1))*e+1/sqrt(Pi), where erf is the error function (see A099286).

A217249 Decimal expansion of Pi^2/sqrt(e).

Original entry on oeis.org

5, 9, 8, 6, 2, 1, 7, 6, 6, 8, 4, 9, 5, 4, 3, 8, 9, 7, 4, 9, 3, 2, 4, 5, 0, 7, 4, 7, 4, 2, 3, 6, 8, 9, 2, 5, 0, 1, 6, 5, 1, 0, 1, 0, 6, 5, 8, 9, 9, 3, 8, 6, 9, 8, 3, 3, 3, 4, 9, 4, 9, 1, 8, 5, 0, 6, 1, 4, 6, 6, 5, 5, 2, 6, 2, 4, 4, 4, 2, 8, 0, 6, 4, 2, 8, 2, 3
Offset: 1

Views

Author

Bruno Berselli, Mar 20 2013

Keywords

Examples

			5.9862176684954389749324507474236892501651010658993869833349491850614...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/Sqrt[E], 10, 90][[1]]

Formula

Showing 1-3 of 3 results.