cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222748 Poly-Cauchy numbers c_n^(-4).

Original entry on oeis.org

1, 16, 65, 45, -116, 340, -1240, 5480, -28464, 169248, -1125840, 8197680, -63806016, 514314240, -4058967744, 26952984000, -37203513984, -4251686488704, 140692872720384, -3560137793538048, 84004474130786304, -1955196907518928896, 45927815909901004800
Offset: 0

Views

Author

Takao Komatsu, Mar 28 2013

Keywords

Comments

Definition of poly-Cauchy numbers in A222627.

Crossrefs

Column k=4 of A383049.

Programs

  • Magma
    [&+[StirlingFirst(n,k)*(k+1)^4: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    Table[Sum[StirlingS1[n, k] (k + 1)^4, {k, 0, n}], {n, 0, 25}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^4); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * (k+1)^4.
From Seiichi Manyama, Apr 14 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^4 * log(1+x)^k / k!.
E.g.f.: (1+x) * Sum_{k=0..4} Stirling2(5,k+1) * log(1+x)^k. (End)