cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A214927 Number of n-digit numbers N that do not end with 0 and are such that the reversal of N divides N but is different from N.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 16, 16, 26, 26, 42, 42, 68, 68, 110, 110, 178, 178, 288, 288, 466, 466, 754, 754, 1220, 1220, 1974, 1974, 3194, 3194, 5168, 5168, 8362, 8362, 13530, 13530, 21892, 21892, 35422, 35422, 57314, 57314, 92736, 92736, 150050, 150050, 242786, 242786, 392836, 392836, 635622, 635622
Offset: 1

Views

Author

Gregory A. Rosenthal, Mar 10 2013

Keywords

Comments

For the actual numbers, see A031877 and their reversals in A008919. See especially the comments in A008919.

Examples

			The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
		

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays, Macmillan, New York, 1939, page 13; Dover, New York, 13th ed. 1987, pp. 14-15.
  • H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions D'Organisation, Paris, 1984.
  • Heinrich Dörrie, Mathematische Miniaturen, Ferdinand Hirt, Breslau, Germany, 1943; see pages 337-339.
  • M. Gardner, Mathematical Magic Show, Vintage Books, 1978, pp. 203, 204, 211, 212.
  • C. A. Grimm and D. W. Ballew, Reversible multiples, J. Rec. Math. 8 (1975-1976), 89-91.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, London, 1986, Entry 1089.

Crossrefs

Programs

  • Magma
    [0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
    
  • Mathematica
    Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
  • SageMath
    def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1))
    [A214927(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = 2*Fibonacci(floor((n-2)/2)) = 2*A103609(n-2), for n > 1.
G.f.: 2*x^4*(1+x) / (1-x^2-x^4). - Colin Barker, Dec 31 2013

Extensions

Formula, more terms and additional references and links from N. J. A. Sloane, Mar 11 2013

A222810 Number of n-digit numbers N with distinct digits such that the reversal of N divides N.

Original entry on oeis.org

9, 9, 3, 5, 3, 2, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.
a(n)=0 for all n > 6.

Examples

			Solutions with 1 through 6 digits:
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 20, 30, 40, 50, 60, 70, 80, 90],
[510, 540, 810],
[5610, 5940, 8712, 8910, 9801],
[65340, 87120, 87912],
[659340, 879120],
		

Crossrefs

For the actual numbers see A223080.

Programs

  • Python
    import collections
    col = []
    count = 0
    for n in range(0, 9):
        a = 10**n
        stop = 10**(n+1)
        while a < stop:
            b = str(a)
            c = list(b)
            d = c[::-1]
            e = int("".join(c))
            f = int("".join(d))
            counter = collections.Counter(c)
            if e % f == 0 and counter.most_common(1)[0][1] == 1:
                count += 1
                col.append(a)
            a += 1
        print(n+1, " digits: ", count, " elements: ", col)
        count = 0
        col = []
    # David Consiglio, Jr., Dec 04 2014

Extensions

a(8)-a(9) from David Consiglio, Jr., Dec 04 2014

A222811 Number of n-digit numbers N such that the reversal of N divides N.

Original entry on oeis.org

9, 18, 111, 212, 1128, 2067, 11123, 20270, 110440, 200971, 1101475, 2003592, 11005388
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.
Even terms are roughly double the previous term. - David Consiglio, Jr., Mar 22 2013

Examples

			Some of the smallest solutions are:
[1, 2, 3, 4, 5, 6, 7, 8, 9] (so a(1) = 9),
[10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99] (so a(2) = 18),
[100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353, ...]
		

Crossrefs

Extensions

a(8) - a(11) from David Consiglio, Jr., Mar 22 2013
a(12)-a(13) from Giovanni Resta, Apr 01 2013

A222812 Number of n-digit numbers N such that the number formed by some nontrivial permutation of the digits of N divides N.

Original entry on oeis.org

0, 18, 329, 5000, 65931, 779504, 8517616, 88555255, 897147508, 8997325290, 90000000000, 900000000000, 9000000000000, 90000000000000, 900000000000000, 9000000000000000, 90000000000000000, 900000000000000000, 9000000000000000000, 90000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.

Examples

			Some of the smallest solutions are:
[10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99] (so a(2) = 18),
[100, 101, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 130, 131, 133, 140, 141, 144, 150, 151, 155, 160, 161, 166, 170, 171, 177, 180, 181, 188, 190, 191, 199, 200, 202, 210, 211, 212, 220, 221, 222, 223, 224, ...]
Note that 11 is in the sequence because permuting the two digits gives 11, and 11 divides 11.
		

Crossrefs

Formula

a(n) = 9 * 10^(n-1) for n >= 11. - Hiroaki Yamanouchi, Sep 03 2014.
G.f.: x^2*(26747100*x^9 +25850210*x^8 +11594958*x^7 +3379095*x^6 +722576*x^5 +120194*x^4 +15931*x^3 +1710*x^2 +149*x +18)/(1-10*x). - Robert Israel, Sep 03 2014

Extensions

a(7)-a(20) from Hiroaki Yamanouchi, Sep 03 2014
Showing 1-4 of 4 results.