cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A214927 Number of n-digit numbers N that do not end with 0 and are such that the reversal of N divides N but is different from N.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 16, 16, 26, 26, 42, 42, 68, 68, 110, 110, 178, 178, 288, 288, 466, 466, 754, 754, 1220, 1220, 1974, 1974, 3194, 3194, 5168, 5168, 8362, 8362, 13530, 13530, 21892, 21892, 35422, 35422, 57314, 57314, 92736, 92736, 150050, 150050, 242786, 242786, 392836, 392836, 635622, 635622
Offset: 1

Views

Author

Gregory A. Rosenthal, Mar 10 2013

Keywords

Comments

For the actual numbers, see A031877 and their reversals in A008919. See especially the comments in A008919.

Examples

			The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
		

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays, Macmillan, New York, 1939, page 13; Dover, New York, 13th ed. 1987, pp. 14-15.
  • H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions D'Organisation, Paris, 1984.
  • Heinrich Dörrie, Mathematische Miniaturen, Ferdinand Hirt, Breslau, Germany, 1943; see pages 337-339.
  • M. Gardner, Mathematical Magic Show, Vintage Books, 1978, pp. 203, 204, 211, 212.
  • C. A. Grimm and D. W. Ballew, Reversible multiples, J. Rec. Math. 8 (1975-1976), 89-91.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, London, 1986, Entry 1089.

Crossrefs

Programs

  • Magma
    [0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
    
  • Mathematica
    Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
  • SageMath
    def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1))
    [A214927(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = 2*Fibonacci(floor((n-2)/2)) = 2*A103609(n-2), for n > 1.
G.f.: 2*x^4*(1+x) / (1-x^2-x^4). - Colin Barker, Dec 31 2013

Extensions

Formula, more terms and additional references and links from N. J. A. Sloane, Mar 11 2013

A222811 Number of n-digit numbers N such that the reversal of N divides N.

Original entry on oeis.org

9, 18, 111, 212, 1128, 2067, 11123, 20270, 110440, 200971, 1101475, 2003592, 11005388
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.
Even terms are roughly double the previous term. - David Consiglio, Jr., Mar 22 2013

Examples

			Some of the smallest solutions are:
[1, 2, 3, 4, 5, 6, 7, 8, 9] (so a(1) = 9),
[10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99] (so a(2) = 18),
[100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353, ...]
		

Crossrefs

Extensions

a(8) - a(11) from David Consiglio, Jr., Mar 22 2013
a(12)-a(13) from Giovanni Resta, Apr 01 2013

A222809 Number of n-digit numbers N such that the reversal of N divides N but is different from N.

Original entry on oeis.org

0, 9, 21, 122, 228, 1167, 2123, 11270, 20440, 110971, 201475, 1103592, 2005388
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.
Conjecture: a(n) = A222811(n) - 9*10^floor((n-1)/2). - Lars Blomberg, Jul 03 2014
Proof of this conjecture: A number N with n digits which equals its own reversal has the first and identical last digit from {1, 2, ..., 9}. If n is even the other n-2 digits come in n/2 - 1 pairs of equal numbers from {0, 1, ..., 9}. If n is odd with n >= 3 then the other n-2 numbers come in (n-3)/2 pairs of equal numbers from {0, 1, ..., 9} and an additional middle digit also from {0, 1, ..., 9}. Therefore there are 9*10^(n/2-1) such numbers N for even n, and 9*10^((n-1)/2) for odd n, fitting 9*10^floor((n-1)/2). - Wolfdieter Lang, Jul 13 2014

Examples

			Some of the smallest solutions are:
[10, 20, 30, 40, 50, 60, 70, 80, 90] (so a(2) = 9),
[100, 110, 200, 220, 300, 330, 400, 440, 500, 510, 540, 550, 600, 660, 700, 770, 800, 810, 880, 900, 990] (so a(3) = 21),
[1000, 1010, 1100, 1110, 1210, 1310, 1410, ...].
		

Crossrefs

Programs

  • PARI
    a(n) = sum(i=10^(n-1), 10^n-1, (irev=eval(concat(Vecrev(Str(i))))) && irev!=i && !(i % irev)); \\ Michel Marcus, Jul 03 2014

Extensions

a(7)-a(12) from Lars Blomberg, Jul 03 2014
a(13) from Giovanni Resta, Aug 15 2019

A222812 Number of n-digit numbers N such that the number formed by some nontrivial permutation of the digits of N divides N.

Original entry on oeis.org

0, 18, 329, 5000, 65931, 779504, 8517616, 88555255, 897147508, 8997325290, 90000000000, 900000000000, 9000000000000, 90000000000000, 900000000000000, 9000000000000000, 90000000000000000, 900000000000000000, 9000000000000000000, 90000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Mar 10 2013

Keywords

Comments

Suggested by A214927.

Examples

			Some of the smallest solutions are:
[10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99] (so a(2) = 18),
[100, 101, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 130, 131, 133, 140, 141, 144, 150, 151, 155, 160, 161, 166, 170, 171, 177, 180, 181, 188, 190, 191, 199, 200, 202, 210, 211, 212, 220, 221, 222, 223, 224, ...]
Note that 11 is in the sequence because permuting the two digits gives 11, and 11 divides 11.
		

Crossrefs

Formula

a(n) = 9 * 10^(n-1) for n >= 11. - Hiroaki Yamanouchi, Sep 03 2014.
G.f.: x^2*(26747100*x^9 +25850210*x^8 +11594958*x^7 +3379095*x^6 +722576*x^5 +120194*x^4 +15931*x^3 +1710*x^2 +149*x +18)/(1-10*x). - Robert Israel, Sep 03 2014

Extensions

a(7)-a(20) from Hiroaki Yamanouchi, Sep 03 2014

A223080 Numbers n with distinct digits such that the reversal of n divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 510, 540, 810, 5610, 5940, 8712, 8910, 9801, 65340, 87120, 87912, 659340, 879120
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2013

Keywords

Comments

Suggested by A214927.
There are no terms with 7 digits.
Sequence is complete. - Giovanni Resta, Mar 20 2013

Examples

			8712 reversed is 2178, which divides 8712.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6],Max[DigitCount[#]]==1&&Divisible[#,IntegerReverse[#]]&] (* Harvey P. Dale, Jun 21 2022 *)

A223081 Numbers n with distinct digits such that n divides the reversal of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1089, 2178, 21978
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2013

Keywords

Comments

The definition implies that n does not end in 0.
There are no terms with 6 digits.
Sequence is complete. - Giovanni Resta, Mar 20 2013

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@(Flatten[Permutations/@Subsets[Range[0,9],5],1]), Divisible[ IntegerReverse[#],#]&]//Quiet//Union (* Harvey P. Dale, Jan 12 2020 *)

A223082 Number of n-digit numbers N with distinct digits such that N divides the reversal of N.

Original entry on oeis.org

9, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2013

Keywords

Comments

The definition implies that N does not end in 0.
The numbers N are listed in A223081.
a(n) = 0 for n > 5.

Crossrefs

Cf. A223081 (the actual numbers), A214927, A222810, A223080.

Extensions

Entry revised by N. J. A. Sloane, Jul 04 2021
Showing 1-7 of 7 results.