A251065
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having x11-x00 less than x10-x01.
Original entry on oeis.org
50, 222, 336, 867, 2740, 2167, 3123, 17129, 31895, 14180, 10660, 89429, 320950, 379440, 92429, 35064, 410718, 2482824, 6182747, 4499219, 603249, 112373, 1716324, 15857764, 71431719, 119032248, 53420941, 3935721, 353517, 6678657, 87634164
Offset: 1
Some solutions for n=2 k=4
..1..2..0..2..2....0..1..2..1..1....0..1..1..1..2....1..2..0..0..2
..1..0..2..2..2....0..1..0..2..2....0..0..0..0..2....0..0..2..2..1
..0..1..1..1..1....1..0..1..0..0....0..1..2..2..1....0..1..0..0..1
A250527
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.
Original entry on oeis.org
50, 222, 222, 867, 1180, 867, 3123, 5029, 5029, 3123, 10660, 18859, 21955, 18859, 10660, 35064, 65310, 82023, 82023, 65310, 35064, 112373, 214812, 279161, 300131, 279161, 214812, 112373, 353517, 682921, 896191, 993123, 993123, 896191, 682921
Offset: 1
Some solutions for n=3 k=4
..2..2..1..1..0....2..2..1..1..0....2..1..0..0..1....2..2..1..0..0
..2..2..1..1..0....1..1..0..1..0....1..0..0..0..1....1..1..1..0..0
..1..1..1..1..1....0..2..1..2..1....2..1..1..1..2....1..1..2..1..1
..1..2..2..2..2....0..2..1..2..2....1..0..0..0..1....1..1..2..1..1
A223815
T(n,k)=Number of nXk 0..2 arrays with row sums nondecreasing and column sums unimodal.
Original entry on oeis.org
3, 9, 6, 22, 50, 10, 46, 337, 222, 15, 86, 1922, 4120, 867, 21, 148, 9783, 65465, 43941, 3123, 28, 239, 45537, 921010, 1941904, 426527, 10660, 36, 367, 198252, 11789302, 76453838, 52310070, 3875213, 35064, 45, 541, 817482, 139965348, 2740448352
Offset: 1
Some solutions for n=3 k=4
..1..0..1..1....0..1..2..2....0..1..2..1....0..1..0..0....0..1..0..0
..1..2..1..0....1..2..2..0....2..2..0..0....0..2..1..0....0..1..1..0
..1..1..2..2....1..1..1..2....0..1..2..2....0..2..1..1....0..0..1..1
A287532
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 50, 16, 1, 1, 57, 222, 150, 25, 1, 1, 120, 867, 1080, 355, 36, 1, 1, 247, 3123, 6627, 3775, 721, 49, 1, 1, 502, 10660, 36552, 33502, 10626, 1316, 64, 1, 1, 1013, 35064, 187000, 262570, 128758, 25676, 2220, 81, 1
Offset: 0
A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50.
Square array begins:
n\k| 1, 2, 3, 4, 5, 6, ...
---+------------------------------------------
0 | 1, 1, 1, 1, 1, 1, ...
1 | 1, 4, 9, 16, 25, 36, ...
2 | 1, 11, 50, 150, 355, 721, ...
3 | 1, 26, 222, 1080, 3775, 10626, ...
4 | 1, 57, 867, 6627, 33502, 128758, ...
5 | 1, 120, 3123, 36552, 262570, 1360128, ...
...
-
f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n]
-
a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ Seiichi Manyama, May 14 2025
A353047
Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.
Original entry on oeis.org
12, 108, 600, 2664, 10404, 37476, 127920, 420768, 1348476, 4242204, 13169160, 40490712, 123635028, 375623892, 1137095520, 3433306896, 10347106860, 31141984140, 93639862200, 281372571720, 845074016772, 2537235316548, 7615933808400, 22856659795584, 68588501433564
Offset: 5
a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
-
nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg =
Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]
Showing 1-5 of 5 results.
Comments