cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A251065 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

50, 222, 336, 867, 2740, 2167, 3123, 17129, 31895, 14180, 10660, 89429, 320950, 379440, 92429, 35064, 410718, 2482824, 6182747, 4499219, 603249, 112373, 1716324, 15857764, 71431719, 119032248, 53420941, 3935721, 353517, 6678657, 87634164
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2014

Keywords

Comments

Table starts
......50.......222.........867..........3123..........10660...........35064
.....336......2740.......17129.........89429.........410718.........1716324
....2167.....31895......320950.......2482824.......15857764........87634164
...14180....379440.....6182747......71431719......641508138......4755605792
...92429...4499219...119032248....2062530658....26192388204....262314968432
..603249..53420941..2295692500...59730054958..1074828860950..14586457826568
.3935721.634161915.44280784440.1731036678270.44184817939580.813777827212550

Examples

			Some solutions for n=2 k=4
..1..2..0..2..2....0..1..2..1..1....0..1..1..1..2....1..2..0..0..2
..1..0..2..2..2....0..1..0..2..2....0..0..0..0..2....0..0..2..2..1
..0..1..1..1..1....1..0..1..0..0....0..1..2..2..1....0..1..0..0..1
		

Crossrefs

Column 1 is A184556
Row 1 is A222993(n+1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) +7*a(n-2) -23*a(n-3) -4*a(n-4) +12*a(n-5)
k=2: [order 11]
k=3: [order 39]
Empirical for row n:
n=1: a(n) = 9*a(n-1) -31*a(n-2) +51*a(n-3) -40*a(n-4) +12*a(n-5)
n=2: [order 12]
n=3: [order 21]
n=4: [order 27]
n=5: [order 33]
n=6: [order 39]

A250527 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

50, 222, 222, 867, 1180, 867, 3123, 5029, 5029, 3123, 10660, 18859, 21955, 18859, 10660, 35064, 65310, 82023, 82023, 65310, 35064, 112373, 214812, 279161, 300131, 279161, 214812, 112373, 353517, 682921, 896191, 993123, 993123, 896191, 682921
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2014

Keywords

Comments

Table starts
......50......222......867......3123.....10660......35064.....112373.....353517
.....222.....1180.....5029.....18859.....65310.....214812.....682921....2122743
.....867.....5029....21955.....82023....279161.....896191....2771901....8374485
....3123....18859....82023....300131....993123....3088923....9240559...26984403
...10660....65310...279161....993123...3183434....9580060...27710543...78195145
...35064...214812...896191...3088923...9580060...27910024...78204775..213775147
..112373...682921..2771901...9240559..27710543...78204775..212707851..565044857
..353517..2122743..8374485..26984403..78195145..213775147..565044857.1462376991
.1097430..6501118.24944039..77707851.217483704..575554760.1478308633.3731976469
.3374226.19720580.73714737.222271083.600720730.1537251580.3832617341.9435234815

Examples

			Some solutions for n=3 k=4
..2..2..1..1..0....2..2..1..1..0....2..1..0..0..1....2..2..1..0..0
..2..2..1..1..0....1..1..0..1..0....1..0..0..0..1....1..1..1..0..0
..1..1..1..1..1....0..2..1..2..1....2..1..1..1..2....1..1..2..1..1
..1..2..2..2..2....0..2..1..2..2....1..0..0..0..1....1..1..2..1..1
		

Crossrefs

Column 1 is A222993(n+1)

Formula

Empirical for column k (k=2 recurrence also works for k=1):
k=1: a(n) = 9*a(n-1) -31*a(n-2) +51*a(n-3) -40*a(n-4) +12*a(n-5)
k=2-7: a(n) = 14*a(n-1) -85*a(n-2) +294*a(n-3) -639*a(n-4) +906*a(n-5) -839*a(n-6) +490*a(n-7) -164*a(n-8) +24*a(n-9)

A223815 T(n,k)=Number of nXk 0..2 arrays with row sums nondecreasing and column sums unimodal.

Original entry on oeis.org

3, 9, 6, 22, 50, 10, 46, 337, 222, 15, 86, 1922, 4120, 867, 21, 148, 9783, 65465, 43941, 3123, 28, 239, 45537, 921010, 1941904, 426527, 10660, 36, 367, 198252, 11789302, 76453838, 52310070, 3875213, 35064, 45, 541, 817482, 139965348, 2740448352
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
..3.......9.........22...........46.............86.............148
..6......50........337.........1922...........9783...........45537
.10.....222.......4120........65465.........921010........11789302
.15.....867......43941......1941904.......76453838......2740448352
.21....3123.....426527.....52310070.....5767953144....581679349302
.28...10660....3875213...1313561156...405333095737.115166445136785
.36...35064...33540705..31302500115.26977674423993
.45..112373..279734339.716436867795
.55..353517.2266708593
.66.1097430

Examples

			Some solutions for n=3 k=4
..1..0..1..1....0..1..2..2....0..1..2..1....0..1..0..0....0..1..0..0
..1..2..1..0....1..2..2..0....2..2..0..0....0..2..1..0....0..1..1..0
..1..1..2..2....1..1..1..2....0..1..2..2....0..2..1..1....0..0..1..1
		

Crossrefs

Column 1 is A000217(n+1)
Column 2 is A222993
Row 1 is A223718

A287532 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 50, 16, 1, 1, 57, 222, 150, 25, 1, 1, 120, 867, 1080, 355, 36, 1, 1, 247, 3123, 6627, 3775, 721, 49, 1, 1, 502, 10660, 36552, 33502, 10626, 1316, 64, 1, 1, 1013, 35064, 187000, 262570, 128758, 25676, 2220, 81, 1
Offset: 0

Views

Author

Don Knuth, May 26 2017

Keywords

Comments

A unimodal product of length n and parameter k is a product of positive integers a_1 ... a_m ... a_n where a_1 <= ... <= a_m <= k and k >= a_m >= ... >= a_n; furthermore we consider each choice of m to give a distinct product, unless a_m=k. (See the example.)

Examples

			A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50.
Square array begins:
  n\k| 1,   2,    3,     4,      5,       6, ...
  ---+------------------------------------------
   0 | 1,   1,    1,     1,      1,       1, ...
   1 | 1,   4,    9,    16,     25,      36, ...
   2 | 1,  11,   50,   150,    355,     721, ...
   3 | 1,  26,  222,  1080,   3775,   10626, ...
   4 | 1,  57,  867,  6627,  33502,  128758, ...
   5 | 1, 120, 3123, 36552, 262570, 1360128, ...
  ...
		

Crossrefs

A(n,n) gives A383883.
Columns k=5..6 give A383892, A383893.

Programs

  • Mathematica
    f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n]
  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ Seiichi Manyama, May 14 2025

Formula

A(n,k) is the coefficient of x^n in 1/((1-k*x) * (1-(k-1)*x)^2 * ... * (1-x)^2).
A(n,k) = Sum_{j=0..n} Stirling2(j+k-1,k-1) * Stirling2(n-j+k,k) for k >= 1. - Seiichi Manyama, May 14 2025

A353047 Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.

Original entry on oeis.org

12, 108, 600, 2664, 10404, 37476, 127920, 420768, 1348476, 4242204, 13169160, 40490712, 123635028, 375623892, 1137095520, 3433306896, 10347106860, 31141984140, 93639862200, 281372571720, 845074016772, 2537235316548, 7615933808400, 22856659795584, 68588501433564
Offset: 5

Views

Author

Geoffrey Critzer, Apr 19 2022

Keywords

Comments

Let A be an alphabet containing m letters. Let S be the set of m^2-m ordered two-tuples of distinct letters in A. The generating function for the number of length n words on A that contain each two-tuple in S as a (not necessarily contiguous) subword is m*(m-1)!^2*x^(2*m-1)/((1-m*x)*Product_{k=1..m-1} (1-k*x)^2).
Appears to equal 12 times A222993, except that sequence only has a conjectured formula. - N. J. A. Sloane, Jun 17 2022

Examples

			a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
		

Crossrefs

Cf. A058809, A222993, A005803 (binary words).

Programs

  • Mathematica
    nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg =
    Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]

Formula

G.f.: (12*x^5)/((1 - 2*x)^2*(1 - x)^2*(1 - 3*x)).
Showing 1-5 of 5 results.