A223023 Poly-Cauchy numbers c_n^(-5).
1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
Crossrefs
Column k=5 of A383049.
Programs
-
Magma
[&+[StirlingFirst(n,k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Mathematica
Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
Formula
a(n) = Sum_{k=0..n} Stirling1(n,k) * (k+1)^5.
From Seiichi Manyama, Apr 14 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^5 * log(1+x)^k / k!.
E.g.f.: (1+x) * Sum_{k=0..5} Stirling2(6,k+1) * log(1+x)^k. (End)
Comments