cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223023 Poly-Cauchy numbers c_n^(-5).

Original entry on oeis.org

1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520
Offset: 0

Views

Author

Takao Komatsu, Mar 28 2013

Keywords

Comments

Definition of poly-Cauchy numbers in A222627.

Crossrefs

Column k=5 of A383049.

Programs

  • Magma
    [&+[StirlingFirst(n,k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * (k+1)^5.
From Seiichi Manyama, Apr 14 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^5 * log(1+x)^k / k!.
E.g.f.: (1+x) * Sum_{k=0..5} Stirling2(6,k+1) * log(1+x)^k. (End)