cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A223256 Triangle read by rows: T(0,0)=1; for n>=1 T(n,k) is the numerator of the coefficient of x^k in the characteristic polynomial of the matrix realizing the transformation to Jacobi coordinates for a system of n particles on a line.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 25, 61, 25, 1, 1, 137, 379, 379, 137, 1, 1, 49, 667, 3023, 667, 49, 1, 1, 363, 529, 8731, 8731, 529, 363, 1, 1, 761, 46847, 62023, 270961, 62023, 46847, 761, 1, 1, 7129, 51011, 9161, 28525, 28525, 9161, 51011, 7129, 1
Offset: 0

Views

Author

Alberto Tacchella, Mar 18 2013

Keywords

Comments

The matrix J(n) realizing the change of coordinates for n particles is
[1, -1, 0, 0, 0, ... 0],
[1/2, 1/2, -1, 0, ... 0],
[1/3, 1/3, 1/3, -1, 0 ... 0],
...
[1/n, 1/n, 1/n, 1/n, ... 1/n]
Diagonals T(n,1)=T(n,n-1) are A001008, corresponding to the fact that the matrix J(n) above has trace equal to the n-th harmonic number.
See A223257 for denominators.

Examples

			Triangle begins:
1,
1, 1,
1, 3, 1,
1, 11, 11, 1,
1, 25, 61, 25, 1,
1, 137, 379, 379, 137, 1,
1, 49, 667, 3023, 667, 49, 1,
1, 363, 529, 8731, 8731, 529, 363, 1,
...
		

A298854 Characteristic polynomials of Jacobi coordinates. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 6, 11, 11, 6, 24, 50, 61, 50, 24, 120, 274, 379, 379, 274, 120, 720, 1764, 2668, 3023, 2668, 1764, 720, 5040, 13068, 21160, 26193, 26193, 21160, 13068, 5040, 40320, 109584, 187388, 248092, 270961, 248092, 187388, 109584, 40320, 362880, 1026576, 1836396, 2565080, 2995125, 2995125, 2565080, 1836396, 1026576, 362880
Offset: 0

Views

Author

F. Chapoton, Jan 27 2018

Keywords

Comments

This is just a different normalization of A223256 and A223257.

Examples

			For n = 3, the polynomial is 6*x^3 + 11*x^2 + 11*x + 6.
The first few polynomials, as a table:
[  1],
[  1,   1],
[  2,   3,   2],
[  6,  11,  11,   6],
[ 24,  50,  61,  50,  24],
[120, 274, 379, 379, 274, 120]
		

Crossrefs

Closely related to A223256 and A223257.
Row sums are A002720.
Leftmost and rightmost columns are A000142.
Alternating row sums are A177145.
Absolute value of evaluation at x = exp(2*i*Pi/3) is A080171.
Evaluation at x=2 gives A187735.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, n+1, expand(
          n*(x+1)*b(n-1)-(n-1)^2*x*b(n-2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 01 2021
  • Mathematica
    P[0] = 1 ; P[1] = x + 1;
    P[n_] := P[n] = n (x + 1) P[n - 1] - (n - 1)^2 x P[n - 2];
    Table[CoefficientList[P[n], x], {n, 0, 9}] // Flatten (* Jean-François Alcover, Mar 16 2020 *)
  • Sage
    @cached_function
    def poly(n):
        x = polygen(ZZ, 'x')
        if n < 0:
            return x.parent().zero()
        elif n == 0:
            return x.parent().one()
        else:
            return n * (x + 1) * poly(n - 1) - (n - 1)**2 * x * poly(n - 2)
    A298854_row = lambda n: list(poly(n))
    for n in (0..7): print(A298854_row(n))

Formula

P(0)=1 and P(n) = n * (x + 1) * P(n - 1) - (n - 1)^2 * x * P(n - 2).
Showing 1-2 of 2 results.