A075362 Triangle read by rows with the n-th row containing the first n multiples of n.
1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, 18, 24, 30, 36, 7, 14, 21, 28, 35, 42, 49, 8, 16, 24, 32, 40, 48, 56, 64, 9, 18, 27, 36, 45, 54, 63, 72, 81, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 60, 72, 84
Offset: 1
Examples
Triangle begins: 1; 2, 4; 3, 6, 9; 4, 8, 12, 16; 5, 10, 15, 20, 25; 6, 12, 18, 24, 30, 36;
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- L. E. Jeffery, Unit-primitive matrices
Crossrefs
Programs
-
Haskell
a075362 n k = a075362_tabl !! (n-1) !! (k-1) a075362_row n = a075362_tabl !! (n-1) a075362_tabl = zipWith (zipWith (*)) a002260_tabl a002024_tabl -- Reinhard Zumkeller, Nov 11 2012, Oct 04 2012
-
Maple
T(n,k):=piecewise(k<=n,sum(i*binomial(k,i)*binomial(n+1-k,n-i),i=1..k),k>n,0) # Mircea Merca, Apr 11 2012
-
Mathematica
Table[NestList[n+#&,n,n-1],{n,15}]//Flatten (* Harvey P. Dale, Jun 14 2022 *)
Formula
T(n,k) = n*k, 1 <= k <= n. - Reinhard Zumkeller, Mar 07 2010
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,n-i), 1 <= k <= n. - Mircea Merca, Apr 11 2012
T(n,k) = A002260(n,k)*A002024(n,k) = (A215630(n,k)-A215631(n,k))/2, 1 <= k <= n. - Reinhard Zumkeller, Nov 11 2012
a(n) = A223544(n) - 1; a(n) = i*(t+1), where i = n - t*(t+1)/2, t = floor((-1 + sqrt(8*n-7))/2). - Boris Putievskiy, Jul 24 2013
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
Comments