cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223865 Number of 2Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

10, 100, 684, 3526, 14751, 52591, 165212, 468292, 1218812, 2951732, 6721028, 14507390, 29883426, 59065484, 112531519, 207449471, 371243434, 646728936, 1099377792, 1827431562, 2975775445, 4754716769, 7465089922, 11531438986
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 2 of A223864

Examples

			Some solutions for n=3
..1..3..1....1..1..0....0..2..2....0..2..0....1..2..3....2..3..2....0..2..3
..2..3..1....1..3..1....0..3..2....1..3..2....3..3..3....2..3..3....1..2..3
		

Formula

Empirical: a(n) = (1/19160064)*n^12 + (1/456192)*n^11 + (2287/43545600)*n^10 + (215/290304)*n^9 + (3991/580608)*n^8 + (2369/53760)*n^7 + (8836141/43545600)*n^6 + (136571/207360)*n^5 + (654599/435456)*n^4 + (865283/362880)*n^3 + (289699/103950)*n^2 + (39143/27720)*n + 1

A223859 Number of n X 3 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

50, 684, 4884, 24199, 93731, 303560, 857696, 2175884, 5058530, 10940664, 22267210, 43028893, 79505879, 141274716, 242543322, 403888650, 654482250, 1034900244, 1600626232, 2426368355, 3611325155, 5285548992, 7617570604, 10823463928
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2013

Keywords

Comments

Column 3 of A223864.

Examples

			Some solutions for n=3:
..2..1..1....0..3..0....2..2..0....1..1..1....0..1..0....0..0..1....2..1..0
..3..2..1....3..3..2....2..3..1....3..2..2....0..2..1....0..0..2....3..3..3
..3..3..1....3..3..2....2..3..1....3..3..3....1..3..1....0..1..3....3..3..3
		

Crossrefs

Cf. A223864.

Formula

Empirical: a(n) = (353/181440)*n^9 + (353/10080)*n^8 + (9707/30240)*n^7 + (13/8)*n^6 + (45713/8640)*n^5 + (1809/160)*n^4 + (332021/22680)*n^3 + (6569/504)*n^2 + (7241/1260)*n - 2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(50 + 184*x + 294*x^2 + 139*x^3 - 59*x^4 + 165*x^5 - 117*x^6 + 66*x^7 - 18*x^8 + 2*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)

A223860 Number of n X 4 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

130, 3526, 41682, 315124, 1771012, 8008548, 30627033, 102479569, 307435001, 842078930, 2135465204, 5069027730, 11361881611, 24219158218, 49385314943, 96803565005, 183160193142, 335692581558, 597766839750, 1036890170376
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2013

Keywords

Comments

Column 4 of A223864.

Examples

			Some solutions for n=3
..0..1..1..1....1..2..3..0....0..1..2..0....0..3..0..0....0..1..1..0
..3..2..2..1....1..2..3..3....1..2..3..1....2..3..0..0....0..2..1..0
..3..3..2..1....2..2..3..3....2..2..3..1....3..3..1..0....0..3..3..3
		

Crossrefs

Cf. A223864.

Formula

Empirical: a(n) = (3551/47900160)*n^12 + (3551/1995840)*n^11 + (100307/4354560)*n^10 + (28081/145152)*n^9 + (1559477/1451520)*n^8 + (14951/3456)*n^7 + (54414629/4354560)*n^6 + (18845069/725760)*n^5 + (41975947/1088640)*n^4 + (7155619/181440)*n^3 + (694249/83160)*n^2 - (7351/990)*n - 11 for n>1.

A223861 Number of nX5 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

296, 14751, 273959, 3017129, 23738426, 145947740, 740441932, 3217594840, 12305144319, 42270004211, 132509660564, 383868226325, 1038081470947, 2642374422155, 6374651949942, 14659617536977, 32293516183091
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Column 5 of A223864

Examples

			Some solutions for n=3
..0..0..0..0..1....0..0..1..1..0....0..0..0..0..0....0..0..1..0..0
..0..0..1..1..1....0..0..1..1..0....2..2..1..0..0....0..0..1..3..1
..3..3..2..2..1....0..0..1..3..0....3..3..1..0..0....0..1..2..3..1
		

Formula

Empirical: a(n) = (769/444787200)*n^15 + (769/14826240)*n^14 + (1364177/1556755200)*n^13 + (4745443/479001600)*n^12 + (19610293/239500800)*n^11 + (21660577/43545600)*n^10 + (51383569/21772800)*n^9 + (4604039/537600)*n^8 + (65760287/2721600)*n^7 + (2366026111/43545600)*n^6 + (21481491623/239500800)*n^5 + (11196959227/119750400)*n^4 - (1120821577/51891840)*n^3 - (1312521589/10810800)*n^2 + (8123611/51480)*n - 113 for n>2

A223862 Number of nX6 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

610, 52591, 1477240, 22852913, 243933798, 1989679315, 13140481520, 73068868012, 352040804450, 1502130487437, 5774921786002, 20281095690376, 65798275499953, 199037907806762, 565735226772194, 1520829902726663, 3888227083552907
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Column 6 of A223864

Examples

			Some solutions for n=3
..0..0..1..2..0..0....0..0..1..2..3..2....0..0..2..1..0..0....0..2..2..2..2..0
..0..2..2..2..2..0....0..0..2..3..3..2....0..0..2..2..2..0....0..2..3..3..2..1
..0..2..3..3..3..2....0..0..2..3..3..2....0..0..3..3..3..3....0..2..3..3..3..2
		

Formula

Empirical: a(n) = (42587101/1600593426432000)*n^18 + (42587101/44460928512000)*n^17 + (315292339/15692092416000)*n^16 + (41939983/145297152000)*n^15 + (4407829651/1426553856000)*n^14 + (41324477/1596672000)*n^13 + (19314677849/113164128000)*n^12 + (2898049019/3143448000)*n^11 + (876424981241/219469824000)*n^10 + (28801840747/2032128000)*n^9 + (50450804070829/1207084032000)*n^8 + (17909311831/177408000)*n^7 + (265168304450783/1471133664000)*n^6 + (27553165793177/163459296000)*n^5 - (2984221796923/29719872000)*n^4 - (816413565637/1009008000)*n^3 - (1198736836439/7718911200)*n^2 + (2348655877/471240)*n - 5035 for n>4

A223863 Number of nX7 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

1163, 165212, 6818350, 144081276, 2030417942, 21476594002, 181330154458, 1271807435844, 7630189031428, 40055722078772, 187351337881293, 792277748611083, 3065939800657297, 10966696897925829, 36566451416331144
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Column 7 of A223864

Examples

			Some solutions for n=3
..0..0..0..0..0..0..0....0..0..0..2..2..2..0....0..0..0..0..1..1..1
..0..0..0..0..0..0..1....0..0..0..2..3..3..2....0..0..0..2..2..1..1
..0..0..0..0..0..2..1....0..0..1..2..3..3..3....0..0..3..3..3..3..3
		

Formula

Empirical: a(n) = (3642102403/12772735542927360000)*n^21 + (3642102403/304112751022080000)*n^20 + (5501403851/18246765061324800)*n^19 + (1301866883/246245142528000)*n^18 + (321344829121/4573124075520000)*n^17 + (9671690543/13076743680000)*n^16 + (48483224873/7604629401600)*n^15 + (4261834903427/94152554496000)*n^14 + (1535291055316393/5649153269760000)*n^13 + (98414490687917/72425041920000)*n^12 + (170390859823/29561241600)*n^11 + (33527325663863/1609445376000)*n^10 + (2567156664752496221/39544072888320000)*n^9 + (78187026472193263/470762772480000)*n^8 + (8882688677555591/28245766348800)*n^7 + (112344931028903/452656512000)*n^6 - (18857407511117083/95273418240000)*n^5 - (193916745450429061/55576160640000)*n^4 - (232978788696097/75811583232)*n^3 + (3865849954293617/293318625600)*n^2 + (834897119951/9699690)*n - 164695 for n>6

A223866 Number of 3Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

20, 400, 4884, 41682, 273959, 1477240, 6818350, 27746619, 101698292, 341120712, 1060013078, 3081189588, 8443340635, 21952389700, 54443494785, 129382581759, 295772387822, 652604111790, 1393875593290, 2889329636208, 5825806879833
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 3 of A223864

Examples

			Some solutions for n=3
..0..1..2....0..1..0....3..2..0....0..0..0....0..0..0....0..2..0....0..0..0
..2..2..2....0..3..0....3..2..0....1..3..1....3..1..0....0..2..0....1..1..0
..2..3..3....1..3..2....3..3..0....3..3..2....3..3..1....1..3..1....3..3..1
		

Formula

Empirical: a(n) = (1/3629463552000)*n^18 + (7/403273728000)*n^17 + (667/951035904000)*n^16 + (3281/174356582400)*n^15 + (148069/402361344000)*n^14 + (1366301/249080832000)*n^13 + (3748907/57480192000)*n^12 + (1190879/1916006400)*n^11 + (344761547/73156608000)*n^10 + (684241027/24385536000)*n^9 + (104051693257/804722688000)*n^8 + (54794329/119750400)*n^7 + (786440609/628992000)*n^6 + (81330893999/31135104000)*n^5 + (895703793151/217945728000)*n^4 + (8582457311/1816214400)*n^3 + (317136049/79168320)*n^2 + (10267897/6126120)*n + 1

A223867 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

35, 1225, 24199, 315124, 3017129, 22852913, 144081276, 784071455, 3781718633, 16487698435, 65952999251, 244841613810, 851144356707, 2790551617469, 8678912669190, 25728520577688, 72995578880032, 198891717017532
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 4 of A223864

Examples

			Some solutions for n=3
..2..1..1....3..3..0....0..0..2....0..2..1....0..2..0....1..1..0....0..0..0
..2..3..1....3..3..1....0..3..2....2..3..1....1..2..0....2..1..0....0..1..0
..2..3..1....3..3..1....0..3..2....2..3..1....2..3..0....2..2..1....0..3..3
..2..3..2....3..3..3....1..3..3....3..3..3....3..3..3....2..3..2....0..3..3
		

Formula

Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/34605285212160000)*n^23 + (2197/1372406261022720000)*n^22 + (37133/608225502044160000)*n^21 + (45197/25276903981056000)*n^20 + (14623277/347557429739520000)*n^19 + (26489599/32011868528640000)*n^18 + (37041601/2667655710720000)*n^17 + (14981899/74392141824000)*n^16 + (19115865583/7532204359680000)*n^15 + (31834111187/1158800670720000)*n^14 + (66986419663/269007298560000)*n^13 + (122476645127999/66283398365184000)*n^12 + (27904576042121/2510734786560000)*n^11 + (949107163427/17557585920000)*n^10 + (100270802691019/470762772480000)*n^9 + (174267558093661/256094948229120)*n^8 + (2011492987640933/1143281018880000)*n^7 + (61760354830949111/16895152834560000)*n^6 + (4216963085471057/703964701440000)*n^5 + (5310598072571189/703964701440000)*n^4 + (2777655817513/391091500800)*n^3 + (19272574007557/3805621142400)*n^2 + (2059892117/1070845776)*n + 1

A223868 Number of 5Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

56, 3136, 93731, 1771012, 23738426, 243933798, 2030417942, 14256118510, 87061570336, 473468963674, 2335341201122, 10598137054237, 44753111308505, 177414858857953, 664941648534183, 2369386354876666, 8063121237072325
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 5 of A223864

Examples

			Some solutions for n=3
..0..0..0....0..1..1....2..0..0....0..0..0....1..1..0....1..0..0....0..0..0
..0..0..0....0..1..1....2..2..0....0..0..1....2..1..1....1..1..1....0..1..0
..1..0..0....0..1..2....2..3..1....1..1..3....2..2..1....1..1..2....2..2..0
..2..3..0....0..3..2....3..3..3....1..3..3....2..2..2....3..3..3....2..2..3
..2..3..1....3..3..3....3..3..3....1..3..3....3..3..3....3..3..3....2..3..3
		

Formula

Empirical: a(n) = (1/7353420799762759680000000)*n^30 + (1/70032579045359616000000)*n^29 + (44267/43995432122902432972800000)*n^28 + (7069/142935127104946176000000)*n^27 + (7664593067/4032914611266056355840000000)*n^26 + (95633173/1590893337777537024000000)*n^25 + (12116718221/7445380820798873272320000)*n^24 + (43392644761/1128088003151344435200000)*n^23 + (167454195287/207507826666635264000000)*n^22 + (15612731/1026631177076736000)*n^21 + (231683957839/891769172451655680000)*n^20 + (66096734083147/16349101494947020800000)*n^19 + (200461940945639/3520141470203904000000)*n^18 + (1823522533638571/2581437078149529600000)*n^17 + (1303802945440133/173715530435474227200)*n^16 + (484634612399204963/7238147101478092800000)*n^15 + (230088704266434095413/461431877719228416000000)*n^14 + (667759304130635953/215119756512460800000)*n^13 + (1965055074194837421509/121392078599981629440000)*n^12 + (652130907487529444879/9196369590907699200000)*n^11 + (209880428234740913519/803878460743680000000)*n^10 + (4164931672385398837/5171147993088000000)*n^9 + (18238486469597047158809/8813187524619878400000)*n^8 + (16125843259442502284221/3672161468591616000000)*n^7 + (512520751978071205586267/67322960257512960000000)*n^6 + (11886431938356946376363/1122049337625216000000)*n^5 + (280599068064199101557/24311068981879680000)*n^4 + (63983220995615011/6697264182336000)*n^3 + (1678025791833176033/279770238283536000)*n^2 + (230910956201/110909026800)*n + 1

A223869 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

84, 7056, 303560, 8008548, 145947740, 1989679315, 21476594002, 191485393983, 1457018264594, 9708014658466, 57822416245144, 313064200874351, 1561981122439360, 7262269235529104, 31752205659432881, 131516275822916936
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 6 of A223864

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..2..1....0..2..3....0..0..0
..2..0..0....0..2..1....1..2..0....1..2..0....0..2..1....0..2..3....0..0..0
..2..3..1....2..3..2....1..2..1....2..2..1....0..2..2....0..3..3....1..0..0
..2..3..1....3..3..2....1..3..1....2..2..1....0..2..2....1..3..3....1..2..0
..2..3..1....3..3..2....1..3..2....2..2..1....3..2..2....2..3..3....1..2..0
..3..3..2....3..3..3....2..3..2....3..2..1....3..3..3....2..3..3....3..2..0
		

Formula

Empirical: a(n) = (1/48569119454267387884339200000000)*n^36 + (1/385469202017995141939200000000)*n^35 + (509/2294879094136521281765376000000)*n^34 + (45072673/3373472268380686284195102720000000)*n^33 + (98970929/155735580571551568517529600000000)*n^32 + (15657172481/622942322286206274070118400000000)*n^31 + (72553007/84245463642710408822784000000)*n^30 + (9224227575469/353670479749588078181744640000000)*n^29 + (259388109101239/365866013534056632601804800000000)*n^28 + (1069067947427789/60977668922342772100300800000000)*n^27 + (324068662301467/813035585631236961337344000000)*n^26 + (1050857599757983/125082397789421070974976000000)*n^25 + (3359228653373591/20330730290850174074880000000)*n^24 + (59499006518000473/19544124654597042339840000000)*n^23 + (328837729476779/6275036678399050383360000)*n^22 + (15779074497679499/19015262661815304192000000)*n^21 + (2751358950432231398341/235662488588764336619520000000)*n^20 + (50435698940805547445789/353493732883146504929280000000)*n^19 + (441377463056670747803689/296934735621843064140595200000)*n^18 + (1873830568342196532829127/141397493153258601971712000000)*n^17 + (267354503696336902783274977/2651202996623598786969600000000)*n^16 + (436422377507839553846644063/662800749155899696742400000000)*n^15 + (1125875946010062345791103079/304888344611713860501504000000)*n^14 + (2092746936332381279309322059/117264747927582254039040000000)*n^13 + (751942966419486002702371387/10125656687825770291200000000)*n^12 + (1974716117993688153795059/7436126973898022400000000)*n^11 + (1788367830018388939084527979/2198714023642167263232000000)*n^10 + (31107899679091365256605057767/14658093490947781754880000000)*n^9 + (211320747100198509737825012033/45147885997445373542400000000)*n^8 + (552453635986071137589553754293/63959505163047612518400000000)*n^7 + (32067365980652302617534655703/2434949582523040687104000000)*n^6 + (2243604186621342688240182563/137690601392671943616000000)*n^5 + (21949153806567016754942281/1376906013926719436160000)*n^4 + (391289317973804357849579/32783476522064748480000)*n^3 + (3883508589248023/569647119000960)*n^2 + (22960563482143/10314539492400)*n + 1
Showing 1-10 of 12 results. Next