cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223911 Number of tiered orders on n nodes (corrected version of A006860).

Original entry on oeis.org

1, 1, 3, 13, 111, 1381, 25623, 678133, 26169951, 1447456261, 114973232583, 13034314621813, 2103826463800911, 481932523110975301, 156356753093586913143, 71729530379673590609653, 46471511649877647638694591, 42487759521494442057018000901, 54781291469300608901184153800103
Offset: 0

Views

Author

Joerg Arndt, Mar 29 2013, using information provided by Joel B. Lewis, M. F. Hasler and Michel Marcus in A006860

Keywords

Crossrefs

Row sums of A361956.
Cf. A218695, A361912 (unlabeled version).

Programs

  • Maple
    f:= (i, j)-> add((-1)^(i-k)*binomial(i, k) *(2^k-1)^j, k=0..i):
    b:= proc(n, i) option remember;
          `if`(n=0, 1, add(b(n-j, j)/j!*f(i, j), j=1..n))
        end:
    a:= n-> n!*b(n, 1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2013
  • Mathematica
    f[i_, j_] := Sum[(-1)^(i-k)*Binomial[i, k]*(2^k-1)^j, {k, 0, i}]; b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]/j!*f[i, j], {j, 1, n}]]; a[n_] := n!*b[n, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    f(m,n) = sum(k=0, m, (-1)^(m-k) * binomial(m,k) * (2^k-1)^n );
    mn(n,V,m) = n! / prod(k=1, m, V[k]! ); /* multinomial of V[1..m] */
    A223911(n)=
    {
        my(m=n, C=vector(n,j,1), z, t, ret);
        while ( 1,  /* for all compositions C[1..m] of n */
            t = mn(n,C,m) * prod(j=1, m-1, f(C[j],C[j+1]) );
            ret += t;
            if ( m<=1, break() ); /* last composition? */
            /* create next composition: */
            C[m-1] += 1;
            z = C[m];
            C[m] = 1;
            m += z - 2;
        );
        return(ret);
    }
    
  • PARI
    \\ here f(m,n) is A218695.
    f(m,n) = {sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n )}
    seq(n)={my(N=matrix(n,n,i,j, f(i,j)), T=vector(n), v=vector(n+1)); v[1]=1; for(r=1, n, T[r]=vector(r, k, (r==k) + binomial(r,k)*sum(i=1, r-k, T[r-k][i]*N[i,k])); v[1+r]=vecsum(T[r])); v} \\ Andrew Howroyd, Mar 29 2023

Formula

a(n) = sum(all composition C of n, M(C) * prod(j=1..m-1, f(C[j]*C[j+1]) ) ) where m is the number of parts of the current composition P, f(i,j) = sum(k=0..i, (-1)^(i-k) * binomial(i,k) * (2^k-1)^j ), and M(C) is the multinomial coefficient n!/prod(j=1..m, C[j]! ); see Pari code.
Klarner incorrectly gives prod(j=1..m-1, f(C[j]*C[m]) ) in the formula for a(n).
Conjecture: a(n) ~ c * 2^(n^2/4 + 3*n/2) / sqrt(n), where c = EllipticTheta[3, 0, 1/2^(1/4)] / (sqrt(Pi) * 2^(1/4)) = 2.020039... (based on the numerical analysis of 600 terms). - Vaclav Kotesovec, Apr 10 2015

Extensions

Added a(0) = 1 by Alois P. Heinz, Jul 23 2013