A006860
Erroneous version of A223911: Tiered orders on n nodes.
Original entry on oeis.org
1, 3, 13, 111, 1381, 25623, 678133, 26269735, 1447451707, 114973020921, 13034306495563
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
ee(n)={my(f(m,n)=sum(k=0,m,(-1)^(m-k)*binomial(m,k)*(2^k-1)^n), C(n,m)=n!/prod(i=1,#m,m[i]!), t(h,n)=my(s=0); forvec(m=vector(h,i,[if(iM. F. Hasler, Nov 07 2012
A001833
Number of labeled graded partially ordered sets with n elements.
Original entry on oeis.org
1, 1, 3, 19, 219, 3991, 106623, 3964339, 199515459, 13399883551, 1197639892983, 143076298623259, 23053861370437659, 5062745845287855271, 1530139311543346178223, 641441466132460086890179, 375107113287994040621904819, 307244526491924695346004951151, 353511145615118063468292270299943
Offset: 0
The poset on {a, b, c, d, e} defined by the relations a < b < c and d < e is counted by this sequence. (For example, one associated rank function is rk(a) = rk(d) = 0, rk(b) = rk(e) = 1 and rk(c) = 2.) However, the poset defined by the relations a < b < c and a < d < e < c is not graded and so not counted by this sequence.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- David A. Klarner, The number of graded partially ordered sets, Journal of Combinatorial Theory, vol.6, no.1, pp.12-19, (January-1969).
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- Index entries for sequences related to posets
Graded posets with no chain of length 3 are counted by
A001831.
A218695
Square array A(h,k) = (2^h-1)*A(h,k-1) + Sum_{i=1..h-1} binomial(h,h-i)*2^i*A(i,k-1), with A(1,k) = A(h,1) = 1; read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 25, 25, 1, 1, 79, 265, 79, 1, 1, 241, 2161, 2161, 241, 1, 1, 727, 16081, 41503, 16081, 727, 1, 1, 2185, 115465, 693601, 693601, 115465, 2185, 1, 1, 6559, 816985, 10924399, 24997921, 10924399, 816985, 6559, 1
Offset: 1
Array A(h,k) begins:
=====================================================
h\k | 1 2 3 4 5 6 ...
----+------------------------------------------------
1 | 1 1 1 1 1 1 ...
2 | 1 7 25 79 241 727 ...
3 | 1 25 265 2161 16081 115465 ...
4 | 1 79 2161 41503 693601 10924399 ...
5 | 1 241 16081 693601 24997921 831719761 ...
6 | 1 727 115465 10924399 831719761 57366997447 ...
...
-
c(h,k)={(h<2 || k<2) & return(1); sum(i=1,h-1,binomial(h,h-i)*2^i*c(i,k-1))+(2^h-1)*c(h,k-1)}
/* For better performance when h and k are large, insert the following memoization code before "sum(...)": cM=='cM & cM=matrix(h,k); my(s=matsize(cM));
s[1] >= h & s[2] >= k & cM[h,k] & return(cM[h,k]);
s[1]
-
A(m, n) = sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n ) \\ Andrew Howroyd, Mar 29 2023
A361912
The number of unlabeled graded posets with n elements.
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 93, 354, 1621, 9110, 64801, 595976, 7204091, 115561423, 2473540433, 70853213144, 2720354016419, 140170631441858, 9702605436760235, 903309202327818566, 113234129823368903523, 19137461395401601912043, 4366007821745938984134203
Offset: 0
A361920
Number of unlabeled ranked posets with n elements.
Original entry on oeis.org
1, 1, 2, 5, 16, 61, 280, 1501, 9394, 68647, 591570, 6108298, 77162708, 1219779207, 24648006828, 647865966973, 22437052221282, 1032905858402302, 63591727342096158, 5258562027225785955, 586001891321599337103, 88241281449605821921186, 17996565026907866304071630
Offset: 0
For n=5, A000112(n) - a(n) = 63 - 61 = 2 because we have 2 posets with 5 elements that are not ranked: a<b<c<d a<e<d and a<c<e a<d b<d b<e where < means "is covered by". - _Geoffrey Critzer_, Oct 29 2023
A361956
Triangle read by rows: T(n,k) is the number of labeled tiered posets with n elements and height k.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 50, 36, 24, 0, 1, 510, 510, 240, 120, 0, 1, 7682, 10620, 4800, 1800, 720, 0, 1, 161406, 312606, 136920, 47040, 15120, 5040, 0, 1, 4747010, 13439076, 5630184, 1678320, 493920, 141120, 40320, 0, 1, 194342910, 821218110, 319384800, 83963880, 21137760, 5594400, 1451520, 362880
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 6, 6;
0, 1, 50, 36, 24;
0, 1, 510, 510, 240, 120;
0, 1, 7682, 10620, 4800, 1800, 720;
0, 1, 161406, 312606, 136920, 47040, 15120, 5040;
...
-
S(M)={my(N=matrix(#M-1, #M-1, i, j, sum(k=1, i-j+1, (2^j-1)^k*M[i-j+1, k])/j!)); for(i=1, #N, for(j=1, i, N[i,j] -= sum(k=1, j-1, N[i-k, j-k]/k!))); N}
C(n)={my(M=matrix(n+1,n+1), R=M); M[1,1]=R[1,1]=1; for(h=1, n, M=S(M); for(i=h, n, R[i+1,h+1] = i!*vecsum(M[i-h+1,]))); R}
{ my(A=C(7)); for(i=1, #A, print(A[i, 1..i])) }
Showing 1-6 of 6 results.
Comments