cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224520 Numbers a(n) with property a(n) + a(n+4) = 2^(n+4) - 1 = A000225(n+4).

Original entry on oeis.org

0, 1, 3, 7, 15, 30, 60, 120, 240, 481, 963, 1927, 3855, 7710, 15420, 30840, 61680, 123361, 246723, 493447, 986895, 1973790, 3947580, 7895160, 15790320, 31580641, 63161283, 126322567, 252645135, 505290270, 1010580540
Offset: 0

Views

Author

Arie Bos, Apr 09 2013

Keywords

Comments

This is the case k=4 of a(n) + a(n+k) = 2^(n+k) - 1 = A000225(n+k). The sequences A000975, A077854 and A153234 correspond to cases k=1,2 and 3, respectively.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/((1 - x)*(1 - 2*x)*(1 + x^4)), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
    LinearRecurrence[{3,-2,0,-1,3,-2},{0,1,3,7,15,30},40] (* Harvey P. Dale, Aug 23 2021 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/((1-x)*(1-2*x)*(1+x^4)))) \\ G. C. Greubel, Oct 11 2017
    
  • Python
    print([2**(n+4)//17 for n in range(31)]) # Karl V. Keller, Jr., Jun 30 2021

Formula

a(n) + a(n+4) = 2^(n+4) - 1.
From Joerg Arndt, Apr 09 2013: (Start)
G.f.: x/((1-x)*(1-2*x)*(1+x^4)).
a(n) = +3*a(n-1) -2*a(n-2) -1*a(n-4) +3*a(n-5) -2*a(n-6). (End)
a(n) = floor(2^(n+4)/17). - Karl V. Keller, Jr., Jun 30 2021