cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A224521 Numbers a(n) with property a(n) + a(n+5) = 2^(n+5) - 1 = A000225(n+5).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 62, 124, 248, 496, 992, 1985, 3971, 7943, 15887, 31775, 63550, 127100, 254200, 508400, 1016800, 2033601, 4067203, 8134407, 16268815, 32537631, 65075262, 130150524, 260301048, 520602096, 1041204192, 2082408385, 4164816771, 8329633543
Offset: 0

Views

Author

Arie Bos, Apr 09 2013

Keywords

Comments

This is the case k=5 of a(n) + a(n+k) = 2^(n+k) - 1 = A000225(n+k). The sequences A000975, A077854, A153234 and A224520 correspond to cases k=1,2,3 and 4, respectively.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x)*(1+x^5)) )); // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    CoefficientList[Series[x/((1-x)*(1-2*x)*(1+x^5)), {x,0,40}], x] (* G. C. Greubel, Oct 11 2017 *)
    LinearRecurrence[{3,-2,0,0,-1,3,-2},{0,1,3,7,15,31,62},40] (* Harvey P. Dale, Apr 29 2020 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x/((1-x)*(1-2*x)*(1+x^5)))) \\ G. C. Greubel, Oct 11 2017
    
  • Python
    print([2**(n+5)//33 for n in range(31)]) # Karl V. Keller, Jr., Jul 03 2021
  • Sage
    (x/((1-x)*(1-2*x)*(1+x^5))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
    

Formula

a(n) + a(n+5) = 2^(n+5) - 1.
From Joerg Arndt, Apr 09 2013: (Start)
G.f.: x/((1-x)*(1+x)*(1-2*x)*(1-x+x^2-x^3+x^4)).
a(n) = +3*a(n-1) -2*a(n-2) -1*a(n-5) +3*a(n-6) -2*a(n-7). (End)
a(n) = floor(2^(n+5)/33). - Karl V. Keller, Jr., Jul 03 2021
Showing 1-1 of 1 results.