A224613 a(n) = sigma(6*n).
12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
Offset: 1
Keywords
Examples
From _Omar E. Pol_, Aug 11 2021: (Start) Illustration of initial terms: ---------------------------------------------------------------------- n 6*n a(n) Diagram: 1 2 3 4 ---------------------------------------------------------------------- _ _ _ _ | | | | | | | | | | | | | | | | * _ _| | | | | | | | | _ _| | | | | | | _ _ _| |_| | | | | | | 1 6 12 |_ _ _ _| * _ _ _| | | | | | _| _ _ _| | | | | * _| _| | | | | | | _| _| * _ _ _ _| | | | | |_ _| | _ _ _ _| | | _ _ _ _ _ _| | _| | | | | 2 12 28 |_ _ _ _ _ _ _| _| _|_| * _ _ _ _ _| | * _ _| _| | _ _ _ _ _| | _ _| _ _| | | | |_ _| _| _ _| | | | _| _| _ _| _ _ _ _ _ _ _ _ _| | | _| _| 3 18 39 |_ _ _ _ _ _ _ _ _ _| * _ _| | _| | _ _| | | |_ _ _| | | | | _ _ _ _ _ _ _ _ _ _ _ _| | 4 24 60 |_ _ _ _ _ _ _ _ _ _ _ _ _| . Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3). a(n) equals the area (also the number of cells) in the n-th diagram. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
DivisorSigma[1,6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
-
PARI
a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
-
Python
from sympy import divisor_sigma def a(n): return divisor_sigma(6*n) print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
-
Python
from math import prod from collections import Counter from sympy import factorint def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2,3])).items()) # Chai Wah Wu, Sep 07 2023
Formula
a(n) = A000203(6n).
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
Extensions
Corrected by Harvey P. Dale, Apr 16 2016
Comments