cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224614 Primes p such that q = 2*p^3-1 and 2*p*q^2-1 are both prime.

Original entry on oeis.org

181, 199, 4363, 4549, 14563, 15073, 15739, 27361, 27901, 33469, 34231, 37123, 46279, 48271, 48673, 54193, 56101, 64591, 64609, 65539, 65731, 70183, 70891, 75703, 75979, 77659, 77863, 80953, 94309, 112573, 114889, 115153, 117361, 118189, 135799, 144751
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Comments

When A224610(i) = 1 then prime(i) is in this sequence.
Subsequence of A177104. - R. J. Mathar, Apr 19 2013

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(180000) | IsPrime(q) and IsPrime(2*p*q^2-1) where q is 2*p^3-1 ]; // Bruno Berselli, Apr 19 2013
  • Mathematica
    Reap[For[p = 2, p < 200000, p = NextPrime[p], If[PrimeQ[q = 2*p^3 - 1] && PrimeQ[r = 2*p*q^2 - 1], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 19 2013 *)
    bpQ[n_]:=Module[{c=2n^3-1},AllTrue[{c,2n*c^2-1},PrimeQ]]; Select[ Prime[ Range[ 15000]],bpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 05 2015 *)