cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224808 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=6, I={-1,1,2,3,4,5}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, 49, 70, 100, 140, 196, 266, 361, 494, 676, 936, 1296, 1800, 2500, 3450, 4761, 6555, 9025, 12445, 17161, 23711, 32761, 45250, 62500, 86250, 119025, 164220, 226576, 312732, 431649, 595899, 822649, 1135564, 1567504, 2163456, 2985984
Offset: 0

Views

Author

Vladimir Baltic, Apr 18 2013

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n-6} without differences equal to 2, 4 or 6.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^5 - x^8)/(1 - x - x^5 + x^6 - x^7 - 2*x^8 + x^9 - x^10 + x^13 + x^16), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
    LinearRecurrence[{1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0,-1},{1,1,1,1,1,1,1,2,4,6,9,12,16,20,25,35},60] (* Harvey P. Dale, Dec 02 2024 *)
  • PARI
    x='x+O('x^66); Vec((1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16) ) \\ Joerg Arndt, Apr 19 2013

Formula

a(n) = a(n-1) + a(n-5) - a(n-6) + a(n-7) + 2*a(n-8) - a(n-9) + a(n-10) - a(n-13) + a(n-16).
G.f.: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
a(2*k-2) = (A003269(k))^2,
a(2*k-1) = A003269(k) * A003269(k+1)