A224809 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=4, I={-1,1,2,3}.
1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, 169, 247, 361, 532, 784, 1148, 1681, 2460, 3600, 5280, 7744, 11352, 16641, 24381, 35721, 52353, 76729, 112462, 164836, 241570, 354025, 518840, 760384, 1114416, 1633284
Offset: 0
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..4096
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,1,0,0,-1).
Programs
-
Mathematica
CoefficientList[Series[-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
PARI
N = 42; x = 'x + O('x^N); Vec(Ser(-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)))) \\ Gheorghe Coserea, Nov 11 2016
Comments