cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225119 Decimal expansion of Integral_{x=0..Pi/2} sin(x)^(3/2) dx.

Original entry on oeis.org

8, 7, 4, 0, 1, 9, 1, 8, 4, 7, 6, 4, 0, 3, 9, 9, 3, 6, 8, 2, 1, 6, 1, 3, 1, 9, 6, 6, 3, 0, 3, 7, 3, 1, 3, 7, 8, 9, 4, 2, 5, 1, 6, 5, 0, 4, 7, 7, 2, 0, 7, 7, 2, 0, 9, 3, 8, 9, 4, 0, 5, 6, 7, 9, 3, 3, 5, 9, 6, 8, 6, 2, 3, 5, 6, 8, 0, 4, 7, 5, 0, 0, 7, 6, 7, 6, 5, 1, 7, 7, 6, 5, 3, 8, 0, 9, 6, 9, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Apr 29 2013

Keywords

Examples

			0.87401918476403993682161319663037313789425165047720772093894...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant p. 102 and Section 6.1 Gauss' Lemniscate Constant p. 422.

Crossrefs

Programs

  • Maple
    evalf((1/3)*sqrt(2)*EllipticK(1/sqrt(2)), 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[1/3*Sqrt[2]*EllipticK[1/2], 10, 100][[1]]
  • PARI
    sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)) \\ G. C. Greubel, Apr 01 2017
    
  • PARI
    ellK(sqrt(1/2))*sqrt(2)/3 \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals 1/3 * sqrt(2) * ellipticK(1/2), (defined as in Mathematica).
Equals sqrt(2)/6 * Pi * hypergeom([1/2,1/2],[1],1/2).
Equals gamma(1/4)^2/(6*sqrt(2*Pi)).
Equals sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)).
Equals Integral_{0..1} (1-x^2)^(1/4) dx.
Equals Integral_{0..1} sqrt(1-x^4) dx. - Charles R Greathouse IV, Aug 21 2017
Equals (2/3)*A085565. - Peter Bala, Oct 27 2019
Equals A062539/3. - Hugo Pfoertner, Dec 15 2024