cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225245 Number of partitions of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A033630(n);
a(n) = A033630(n) iff n is squarefree: a(A005117(n)) = A033630(A005117(n));
a(A225353(n)) = 0; a(A225354(n)) > 0.

Examples

			a(2*3)     = a(6)  = #{6, 3+2+1} = 2;
a(2*2*3)   = a(12) = #{6+3+2+1} = 1;
a(2*3*5)   = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4;
a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3;
a(2*3*7)   = a(42) = #{42, 21+14+7, 21+14+6+1} = 3;
a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2.
		

Crossrefs

Programs

  • Haskell
    a225245 n = p (a206778_row n) n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 08 2021, after Ilya Gutkovskiy *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017