A225245 Number of partitions of n into distinct squarefree divisors of n.
1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 1
Offset: 0
Keywords
Examples
a(2*3) = a(6) = #{6, 3+2+1} = 2; a(2*2*3) = a(12) = #{6+3+2+1} = 1; a(2*3*5) = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4; a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3; a(2*3*7) = a(42) = #{42, 21+14+7, 21+14+6+1} = 3; a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (5000 terms from Reinhard Zumkeller)
- Noah Lebowitz-Lockard and Joseph Vandehey, On the number of partitions of a number into distinct divisors, arXiv:2402.08119 [math.NT], 2024. See p. 2.
Programs
-
Haskell
a225245 n = p (a206778_row n) n where p _ 0 = 1 p [] _ = 0 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Mathematica
a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 08 2021, after Ilya Gutkovskiy *)
Formula
a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017
Comments