cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033630 Number of partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 35, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 26, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 22, 1, 1, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			a(12) = 3 because we have the partitions [12], [6, 4, 2], and [6, 3, 2, 1].
		

Crossrefs

Programs

  • Haskell
    a033630 0 = 1
    a033630 n = p (a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (d:ds) m = if d > m then 0 else p ds (m - d) + p ds m
    -- Reinhard Zumkeller, Feb 23 2014, Apr 04 2012, Oct 27 2011
  • Maple
    with(numtheory): a:=proc(n) local div, g, gser: div:=divisors(n): g:=product(1+x^div[j],j=1..tau(n)): gser:=series(g,x=0,105): coeff(gser,x^n): end: seq(a(n),n=1..100); # Emeric Deutsch, Mar 30 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    A033630 = Table[SeriesCoefficient[Series[Times@@((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n ], {n, 512}] (* Wouter Meeussen *)
    A033630[n_] := f[n, n, 1]; f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k + 1] + f[n, m - k, k + 1] * Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[A033630, 101, 0] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)

Formula

a(n) = A065205(n) + 1.
a(A005100(n)) = 1; a(A005835(n)) > 1. - Reinhard Zumkeller, Mar 02 2007
a(n) = f(n, n, 1) with f(n, m, k) = if k <= m then f(n, m, k + 1) + f(n, m - k, k + 1)*0^(n mod k) else 0^m. - Reinhard Zumkeller, Dec 11 2009
a(n) = [x^n] Product_{d|n} (1 + x^d). - Ilya Gutkovskiy, Jul 26 2017
a(n) = 1 if n is deficient (A005100) or weird (A006037). a(n) = 2 if n is perfect (A000396). - Alonso del Arte, Sep 24 2017

Extensions

More terms from Reinhard Zumkeller, Apr 21 2003

A087188 Number of partitions of n into distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 13, 14, 16, 18, 20, 24, 27, 30, 35, 37, 42, 47, 51, 59, 64, 72, 81, 88, 98, 109, 120, 134, 147, 163, 179, 195, 216, 236, 258, 284, 310, 339, 371, 403, 441, 480, 523, 572, 621, 675, 734, 796, 865, 937, 1014, 1100, 1189
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Examples

			n=9: 5+3+1 = 6+2+1 = 6+3 = 7+2: a(9)=4;
n=10: 5+3+2 = 6+3+1 = 7+2+1 = 7+3 = 10: a(10)=5.
		

Crossrefs

Programs

  • Haskell
    a087188 = p a005117_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 02 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i <= n && SquareFreeQ[i], b[n-i, i-1], 0]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[Abs[MoebiusMu[k]] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    ok(v)=for(i=2,#v, if(v[i]==v[i-1] || !issquarefree(v[i]), return(0))); #v==0 || issquarefree(v[1])
    a(n)=my(s,u); forpart(v=n, if(ok(v), s++)); s \\ Charles R Greathouse IV, Nov 05 2017

Formula

O.g.f.: product_{i=1,2,...infinity} [1+x^A005117(i)]. - R. J. Mathar, May 16 2008
a(n) ~ exp(sqrt(2*n)) / (2^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015

A225244 Number of partitions of n into squarefree divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 8, 2, 5, 4, 11, 2, 27, 2, 14, 14, 9, 2, 64, 2, 40, 18, 20, 2, 125, 6, 23, 10, 53, 2, 742, 2, 17, 26, 29, 26, 343, 2, 32, 30, 195, 2, 1654, 2, 79, 136, 38, 2, 729, 8, 341, 38, 92, 2, 1000, 38, 265, 42, 47, 2, 14188, 2, 50, 184, 33, 44, 5257, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A018818(n);
a(n) = A018818(n) iff n is squarefree: a(A005117(n)) = A018818(A005117(n));
a(A000040(n)) = 2.

Examples

			a(8) = #{2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+6x1, 8x1} = 5;
a(9) = #{3+3+3, 3+3+1+1+1, 3+1+1+1+1+1+1, 9x1} = 4;
a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11;
a(11) = #{11, 1+1+1+1+1+1+1+1+1+1+1} = 2;
a(12) = #{6+6, 6+3+3, 6+3+2+1, 6+3+1+1+1, 6+2+2+2, 6+2+2+1+1, 6+2+1+1+1+1, 6+6x1, 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1, 3+3+2+4x1, 3+3+6x1, 3+2+2+2+2+1, 3+2+2+2+1+1+1, 3+2+2+5x1, 3+2+7x1, 3+8x1, 2+2+2+2+2+2, 2+2+2+2+2+1+1, 2+2+2+2+1+1+1+1, 2+2+2+6x1, 2+2+8x1, 2+10x1, 12x1} = 27;
a(13) = #{11, 1+1+1+1+1+1+1+1+1+1+1+1+1} = 2;
a(14) = #{14, 7+7, 7+2+2+2+1, 7+2+2+1+1+1, 7+2+5x1, 7+7x1, 7x2, 6x2+1+1, 5x2+1+1+1+1, 4x2+6x1, 2+2+2+8x1, 2+2+10x1, 2+12x1, 14x1} = 14;
a(15) = #{15, 5+5+5, 5+5+3+1+1, 5+5+5x1, 5+3+3+3+1, 5+3+3+1+1+1+1, 5+3+7x1, 5+10x1, 3+3+3+3+3, 3+3+3+3+1+1+1, 3+3+3+6x1, 3+3+9x1, 3+12x1, 15x1} = 14.
		

Crossrefs

Programs

  • Haskell
    a225244 n = p (a206778_row n) n where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([select(issqrfree, divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,
                `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    a[0] = 1; a[n_] := Module[{b, l}, l = Select[Divisors[n], SquareFreeQ]; b[m_, i_] := b[m, i] = If[m == 0 || i == 1, 1, If[i < 1, 0, b[m, i - 1] + If[l[[i]] > m, 0, b[m - l[[i]], i]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} 1/(1 - x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017

A225354 Numbers that can be written as sum of distinct squarefree divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

A225245(a(n)) > 0.

Crossrefs

Cf. A225353 (complement).

Programs

  • Haskell
    import Data.List (findIndices)
    a225354 n = a225354_list !! (n-1)
    a225354_list = map (+ 1) $ findIndices (> 0) a225245_list
  • Mathematica
    f[n_] := f[n] = Coefficient[Product[If[MoebiusMu[d] != 0, 1 + x^d, 1], {d, Divisors[n]}], x, n];
    ParallelTable[If[f[k] > 0, k, Nothing], {k, 1, 1000}] (* Jean-François Alcover, May 04 2024, after Ilya Gutkovskiy in A225245 *)

A225353 Numbers having no partition into distinct squarefree divisors.

Original entry on oeis.org

4, 8, 9, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 126, 128, 135, 136, 140, 144, 147, 148, 150, 152, 153, 160, 162, 164
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

A225245(a(n)) = 0.
Verified up to a(366) = 1000, a(n) is also the order of a finite group G for which |Out(G)|>|G| for at least one group of order a(n), Out(G) being the outer automorphism group of G. - Miles Englezou, Apr 19 2024
By definition, a(n) is nonsquarefree for every n, since every squarefree number m has a trivial partition into distinct squarefree divisors m = m. - Miles Englezou, Apr 20 2024
If k is a term then so is k*m where m|k. - David A. Corneth, Apr 27 2024

Crossrefs

Cf. A013929, A225245, A225354 (complement).

Programs

  • Haskell
    import Data.List (elemIndices)
    a225353 n = a225353_list !! (n-1)
    a225353_list = map (+ 1) $ elemIndices 0 a225245_list
  • Mathematica
    f[n_] := Coefficient[Product[If[MoebiusMu[d] != 0, 1 + x^d, 1], {d, Divisors[n]}], x, n];
    Select[Range[200], f[#] == 0&] (* Jean-François Alcover, May 04 2024, after Ilya Gutkovskiy in A225245 *)

A284464 Number of compositions (ordered partitions) of n into squarefree divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 25, 2, 34, 19, 129, 2, 1046, 2, 742, 450, 1597, 2, 44254, 2, 27517, 3321, 29967, 2, 1872757, 571, 200390, 18560, 854850, 2, 154004511, 2, 3524578, 226020, 9262157, 51886, 3353855285, 2, 63346598, 2044895, 1255304727, 2, 185493291001, 2, 1282451595, 345852035, 2972038875, 2, 6006303471178
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2017

Keywords

Examples

			a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are squarefree {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 2, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local b, l;
          l, b:= select(issqrfree, divisors(n)),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..50);   # Alois P. Heinz, Mar 30 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[MoebiusMu[d[[k]]]^2 x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 48}]
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    from sympy.core.cache import cacheit
    @cacheit
    def a(n):
        l=[x for x in divisors(n) if core(x)==x]
        @cacheit
        def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
        return b(n)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 01 2017, after Maple code

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, |mu(d)| = 1} x^d), where mu(d) is the Moebius function (A008683).
a(n) = 2 if n is a prime.

A300586 Number of partitions of n into distinct squarefree parts that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 2, 2, 4, 6, 2, 8, 4, 6, 6, 15, 4, 11, 10, 12, 8, 30, 3, 38, 24, 17, 24, 23, 14, 70, 36, 37, 23, 102, 8, 122, 49, 39, 80, 177, 38, 136, 54, 113, 101, 297, 60, 152, 102, 192, 226, 485, 28, 571, 312, 200, 390, 338, 84, 908, 393, 507, 104, 1229, 241, 1421
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Examples

			a(14) = 2 because we have [11, 3] and [6, 5, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + Boole[Mod[n, k] != 0 && SquareFreeQ[k]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 73}]

A327641 Number of partitions of n into divisors d of n such that n/d is squarefree.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 8, 2, 2, 2, 11, 2, 8, 2, 14, 14, 2, 2, 8, 2, 11, 18, 20, 2, 8, 2, 23, 2, 14, 2, 742, 2, 2, 26, 29, 26, 8, 2, 32, 30, 11, 2, 1654, 2, 20, 14, 38, 2, 8, 2, 11, 38, 23, 2, 8, 38, 14, 42, 47, 2, 742, 2, 50, 18, 2, 44, 5257, 2, 29, 50, 5066, 2, 8, 2, 59, 14
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2019

Keywords

Crossrefs

Cf. A008683, A018818, A225244, A225245, A246655 (positions of 2's).

Programs

  • Magma
    [1] cat [#RestrictedPartitions(n,{d:d in Divisors(n)|IsSquarefree(n div d)}):n in [1..75]]; // Marius A. Burtea, Sep 20 2019
    
  • Mathematica
    a[n_] := SeriesCoefficient[Product[1/(1 - MoebiusMu[n/d]^2 x^d), {d, Divisors[n]}], {x, 0, n}]; Table[a[n], {n, 0, 75}]
  • PARI
    A327641(n) = if(!n, 1, my(p = Ser(1, 'x, 1+n)); fordiv(n, d, if(issquarefree(n/d), p /= (1 - 'x^d))); polcoef(p, n)); \\ Antti Karttunen, Jan 28 2025

Formula

a(n) = [x^n] Product_{d|n} 1 / (1 - mu(n/d)^2 * x^d).

A378843 Number of compositions (ordered partitions) of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 7, 1, 0, 0, 1, 1, 24, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 151, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 31, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 864, 1, 1, 0, 0, 1, 127, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 7, 1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2024

Keywords

Comments

From Robert Israel, Dec 15 2024: (Start)
If n is squarefree, a(n) >= 1, as [n] is a composition.
If n = b * c where b and c are coprime and c is squarefree, then a(n) >= a(b), as for any composition C of b into distinct squarefree divisors, multiplying each element of C by c gives a composition of n into distinct squarefree divisors. (End)

Examples

			a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
a(12) = 24 because we have [6, 3, 2, 1] and 4! = 24 permutations.
		

Crossrefs

Programs

  • Maple
    ptns:= proc(S,n) option remember;
      # subsets of S with sum n
      local m,s;
      if convert(S,`+`) < n then return {} fi;
      if n = 0 then return {{}} fi;
      s:= max(S);
      if s > n then return procname(select(`<=`,S,n),n) fi;
      map(t -> t union {s}, procname(S minus {s},n-s)) union procname(S minus {s}, n)
      end proc:
    sfd:= proc(n) map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`) end proc:
    f:= proc(n) local t;
         add((nops(t))!, t = ptns(sfd(n),n))
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 15 2024
  • Mathematica
    a[n_] := Module[{d = Select[Divisors[n], SquareFreeQ]}, Total[(Length /@ Select[Subsets[d], Total[#] == n &])!]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Dec 10 2024 *)
Showing 1-9 of 9 results.