cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372135 Nonsquarefree numbers not in A225353; equivalently, nonsquarefree numbers in A225354.

Original entry on oeis.org

12, 60, 84, 132, 156, 204, 228, 276, 348, 372, 420, 444, 492, 516, 564, 636, 660, 708, 732, 780, 804, 852, 876, 924, 948, 996, 1020, 1068, 1092, 1140, 1164, 1212, 1236, 1284, 1308, 1356, 1380, 1428, 1524, 1540, 1572, 1596, 1644, 1668, 1716, 1740, 1788, 1812, 1820
Offset: 1

Views

Author

Miles Englezou, Apr 20 2024

Keywords

Comments

Every number in A225353 is nonsquarefree. a(n) corresponds to those numbers which are nonsquarefree yet contain at least one partition into distinct squarefree divisors.
Verified up to a(26) = 996: except for 12, a(n) is also the order of a finite group G for which |Out(G)|<|G| for all isomorphism classes of G where the order of G is nonsquarefree. |Out(G)|<|G| for all isomorphism classes of groups with squarefree order in the same range.
If k is a term, then so is m * k where m is squarefree and coprime to k. - Robert Israel, Apr 21 2024
Comparison with other similar sequences:
For values up to and including a(2000)=76044:
b(n): | 12*A276378| 12*A007310| 12*A038179| 4*A243128| A357686
--------------------------------------------------------------------------------
# a(n) not in b(n) | 73| 70| 74| 0| 1
# b(n) not in a(n) | 0| 186| 188| 69| 69
First a(n) not in b(n)| a(40)=1540| a(40)=1540| a(1)=12| - | a(1)=12
First b(n) not in a(n)| - | 12*b(9)=300| 12*b(1)=24| 4*b(5)=140| b(4)=140

Examples

			12 is a term since 12 = 2^2*3 and 12 = 1 + 2 + 3 + 6.
		

Crossrefs

Cf. A005117 (squarefree numbers), A013929 (nonsquarefree numbers), A225353, A225354, A007310, A038179, A243128, A276378, A357686.

Programs

  • Maple
    filter:= proc(n) local P,z,d;
      if numtheory:-issqrfree(n) then return false fi;
      P:= mul(1+z^d, d = select(numtheory:-issqrfree,numtheory:-divisors(n)));
      coeff(P,z,n) > 0
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Apr 21 2024
  • Mathematica
    filter[n_] := Module[{P, z, d},
       If[SquareFreeQ[n], Return[False]];
       P = Product[1 + z^d, {d, Select[Divisors[n], SquareFreeQ]}];
       Coefficient[P, z, n] > 0];
    Select[Range[2000], If[filter[#], Print[#]; True, False]&] (* Jean-François Alcover, May 28 2024, after Robert Israel *)

Formula

Equals A013929\A225353 and also A225354\A005117.

A225245 Number of partitions of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A033630(n);
a(n) = A033630(n) iff n is squarefree: a(A005117(n)) = A033630(A005117(n));
a(A225353(n)) = 0; a(A225354(n)) > 0.

Examples

			a(2*3)     = a(6)  = #{6, 3+2+1} = 2;
a(2*2*3)   = a(12) = #{6+3+2+1} = 1;
a(2*3*5)   = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4;
a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3;
a(2*3*7)   = a(42) = #{42, 21+14+7, 21+14+6+1} = 3;
a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2.
		

Crossrefs

Programs

  • Haskell
    a225245 n = p (a206778_row n) n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 08 2021, after Ilya Gutkovskiy *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017

A225354 Numbers that can be written as sum of distinct squarefree divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

A225245(a(n)) > 0.

Crossrefs

Cf. A225353 (complement).

Programs

  • Haskell
    import Data.List (findIndices)
    a225354 n = a225354_list !! (n-1)
    a225354_list = map (+ 1) $ findIndices (> 0) a225245_list
  • Mathematica
    f[n_] := f[n] = Coefficient[Product[If[MoebiusMu[d] != 0, 1 + x^d, 1], {d, Divisors[n]}], x, n];
    ParallelTable[If[f[k] > 0, k, Nothing], {k, 1, 1000}] (* Jean-François Alcover, May 04 2024, after Ilya Gutkovskiy in A225245 *)
Showing 1-3 of 3 results.