cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372135 Nonsquarefree numbers not in A225353; equivalently, nonsquarefree numbers in A225354.

Original entry on oeis.org

12, 60, 84, 132, 156, 204, 228, 276, 348, 372, 420, 444, 492, 516, 564, 636, 660, 708, 732, 780, 804, 852, 876, 924, 948, 996, 1020, 1068, 1092, 1140, 1164, 1212, 1236, 1284, 1308, 1356, 1380, 1428, 1524, 1540, 1572, 1596, 1644, 1668, 1716, 1740, 1788, 1812, 1820
Offset: 1

Views

Author

Miles Englezou, Apr 20 2024

Keywords

Comments

Every number in A225353 is nonsquarefree. a(n) corresponds to those numbers which are nonsquarefree yet contain at least one partition into distinct squarefree divisors.
Verified up to a(26) = 996: except for 12, a(n) is also the order of a finite group G for which |Out(G)|<|G| for all isomorphism classes of G where the order of G is nonsquarefree. |Out(G)|<|G| for all isomorphism classes of groups with squarefree order in the same range.
If k is a term, then so is m * k where m is squarefree and coprime to k. - Robert Israel, Apr 21 2024
Comparison with other similar sequences:
For values up to and including a(2000)=76044:
b(n): | 12*A276378| 12*A007310| 12*A038179| 4*A243128| A357686
--------------------------------------------------------------------------------
# a(n) not in b(n) | 73| 70| 74| 0| 1
# b(n) not in a(n) | 0| 186| 188| 69| 69
First a(n) not in b(n)| a(40)=1540| a(40)=1540| a(1)=12| - | a(1)=12
First b(n) not in a(n)| - | 12*b(9)=300| 12*b(1)=24| 4*b(5)=140| b(4)=140

Examples

			12 is a term since 12 = 2^2*3 and 12 = 1 + 2 + 3 + 6.
		

Crossrefs

Cf. A005117 (squarefree numbers), A013929 (nonsquarefree numbers), A225353, A225354, A007310, A038179, A243128, A276378, A357686.

Programs

  • Maple
    filter:= proc(n) local P,z,d;
      if numtheory:-issqrfree(n) then return false fi;
      P:= mul(1+z^d, d = select(numtheory:-issqrfree,numtheory:-divisors(n)));
      coeff(P,z,n) > 0
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Apr 21 2024
  • Mathematica
    filter[n_] := Module[{P, z, d},
       If[SquareFreeQ[n], Return[False]];
       P = Product[1 + z^d, {d, Select[Divisors[n], SquareFreeQ]}];
       Coefficient[P, z, n] > 0];
    Select[Range[2000], If[filter[#], Print[#]; True, False]&] (* Jean-François Alcover, May 28 2024, after Robert Israel *)

Formula

Equals A013929\A225353 and also A225354\A005117.

A225245 Number of partitions of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A033630(n);
a(n) = A033630(n) iff n is squarefree: a(A005117(n)) = A033630(A005117(n));
a(A225353(n)) = 0; a(A225354(n)) > 0.

Examples

			a(2*3)     = a(6)  = #{6, 3+2+1} = 2;
a(2*2*3)   = a(12) = #{6+3+2+1} = 1;
a(2*3*5)   = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4;
a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3;
a(2*3*7)   = a(42) = #{42, 21+14+7, 21+14+6+1} = 3;
a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2.
		

Crossrefs

Programs

  • Haskell
    a225245 n = p (a206778_row n) n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 08 2021, after Ilya Gutkovskiy *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017

A225353 Numbers having no partition into distinct squarefree divisors.

Original entry on oeis.org

4, 8, 9, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 126, 128, 135, 136, 140, 144, 147, 148, 150, 152, 153, 160, 162, 164
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

A225245(a(n)) = 0.
Verified up to a(366) = 1000, a(n) is also the order of a finite group G for which |Out(G)|>|G| for at least one group of order a(n), Out(G) being the outer automorphism group of G. - Miles Englezou, Apr 19 2024
By definition, a(n) is nonsquarefree for every n, since every squarefree number m has a trivial partition into distinct squarefree divisors m = m. - Miles Englezou, Apr 20 2024
If k is a term then so is k*m where m|k. - David A. Corneth, Apr 27 2024

Crossrefs

Cf. A013929, A225245, A225354 (complement).

Programs

  • Haskell
    import Data.List (elemIndices)
    a225353 n = a225353_list !! (n-1)
    a225353_list = map (+ 1) $ elemIndices 0 a225245_list
  • Mathematica
    f[n_] := Coefficient[Product[If[MoebiusMu[d] != 0, 1 + x^d, 1], {d, Divisors[n]}], x, n];
    Select[Range[200], f[#] == 0&] (* Jean-François Alcover, May 04 2024, after Ilya Gutkovskiy in A225245 *)

A349019 Modified e-perfect numbers: numbers k such that A348963(k) | k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2021

Keywords

Comments

First differs from A225354 at n = 25.
Not to be confused with modified exponential perfect numbers (A323757).
Sándor (2006) showed that the exponential harmonic numbers of type 2 (A348964) are terms in this sequence.
All the squarefree numbers are terms (A005117), since A348963(k) = 1 if k is squarefree.

Examples

			12 is a term since A348963(12) = 3 is a divisor of 12.
		

Crossrefs

A005117, A348964 and A349020 are subsequences.

Programs

  • Mathematica
    f[p_, e_] := p^e/DivisorSum[e, p^(e - #) &]; modEPerfQ[1] = True; modEPerfQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], modEPerfQ]
Showing 1-4 of 4 results.