A225402 10-adic cube root of -1/3.
7, 7, 4, 6, 4, 4, 5, 8, 3, 4, 4, 6, 8, 3, 1, 5, 1, 0, 5, 1, 6, 9, 6, 1, 3, 1, 3, 7, 2, 2, 4, 6, 4, 4, 3, 8, 3, 5, 3, 3, 5, 6, 2, 5, 2, 3, 2, 8, 6, 3, 4, 1, 8, 9, 6, 7, 0, 4, 8, 3, 6, 7, 1, 1, 6, 6, 5, 2, 0, 7, 4, 0, 9, 2, 8, 0, 3, 0, 3, 0, 7, 3, 9, 7, 9, 7, 3, 4, 6, 5, 3, 1, 3, 0, 0, 8, 7, 4, 5, 7
Offset: 0
Examples
7^3 == 3 (mod 10). 77^3 == 33 (mod 10^2). 477^3 == 333 (mod 10^3). 6477^3 == 3333 (mod 10^4). 46477^3 == 33333 (mod 10^5). 446477^3 == 333333 (mod 10^6).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 7*n, irem(b(n-1)+9*(3*b(n-1)^3+1), 10^n)) end: a:= n-> (b(n+1)-b(n))/10^n: seq(a(n), n=0..100); # Alois P. Heinz, Apr 15 2022
-
PARI
n=0;for(i=1,100,m=(10^i-1)/3;for(x=0,9,if(((n+(x*10^(i-1)))^3)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
-
PARI
upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((-m+O(5^N))^m, 5^N), Mod((-m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
-
Ruby
def A225402(n) ary = [7] a = 7 n.times{|i| b = (a + 9 * (3 * a ** 3 + 1)) % (10 ** (i + 2)) ary << (b - a) / (10 ** (i + 1)) a = b } ary end p A225402(100) # Seiichi Manyama, Aug 12 2019
Formula
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019
Extensions
New name (using M. F. Hasler's comment) from Joerg Arndt, Aug 08 2019
Comments