A225411 10-adic integer x such that x^3 == (6*(10^(n+1)-1)/9)+1 mod 10^(n+1) for all n.
3, 2, 5, 3, 5, 5, 4, 1, 6, 5, 5, 3, 1, 6, 8, 4, 8, 9, 4, 8, 3, 0, 3, 8, 6, 8, 6, 2, 7, 7, 5, 3, 5, 5, 6, 1, 6, 4, 6, 6, 4, 3, 7, 4, 7, 6, 7, 1, 3, 6, 5, 8, 1, 0, 3, 2, 9, 5, 1, 6, 3, 2, 8, 8, 3, 3, 4, 7, 9, 2, 5, 9, 0, 7, 1, 9, 6, 9, 6, 9, 2, 6, 0, 2, 0, 2, 6, 5, 3, 4, 6, 8, 6, 9, 9, 1, 2, 5, 4, 2
Offset: 0
Examples
3^3 == 7 (mod 10). 23^3 == 67 (mod 10^2). 523^3 == 667 (mod 10^3). 3523^3 == 6667 (mod 10^4). 53523^3 == 66667 (mod 10^5). 553523^3 == 666667 (mod 10^6).
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
op([1,3],padic:-rootp(3*x^3 -1, 10, 101)); # Robert Israel, Aug 04 2019
-
PARI
n=0; for(i=1, 100, m=(2*(10^i-1)/3)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
-
PARI
upto(N=100,m=1/3)=Vecrev(digits(lift(chinese(Mod((m+O(5^N))^m, 5^N), Mod((m+O(2^N))^m, 2^N)))),N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
-
Ruby
def A225411(n) ary = [3] a = 3 n.times{|i| b = (a + 9 * (3 * a ** 3 - 1)) % (10 ** (i + 2)) ary << (b - a) / (10 ** (i + 1)) a = b } ary end p A225411(100) # Seiichi Manyama, Aug 12 2019
Formula
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019
Comments