cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A225648 Positions of ones in A225650, numbers n such that n and A000793(n) are coprime.

Original entry on oeis.org

0, 1, 5, 7, 8, 9, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Antti Karttunen, May 12 2013

Keywords

Comments

Contains all primes from 5 onward. Are 8, 9 and 27 only composite numbers present?

Crossrefs

Complement: A225649. Cf. also A225650.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j*b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n < 8, 3, PrimePi[Ceiling[1.328*Sqrt[n* Log[n] // Floor]]]]]; Join[{0}, Position[Table[GCD[n, g[n]], {n, 1, 500} ], 1] // Flatten] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

A225651 Numbers k that divide A000793(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 14, 15, 20, 21, 24, 30, 35, 36, 39, 40, 42, 44, 52, 55, 56, 60, 65, 66, 70, 72, 76, 77, 78, 84, 85, 90, 91, 95, 99, 102, 105, 110, 114, 115, 117, 119, 120, 126, 130, 132, 133, 136, 138, 140, 143, 152, 153, 154, 155, 156, 161, 165, 170
Offset: 1

Views

Author

Antti Karttunen, May 16 2013

Keywords

Comments

After 1, a subset of A225649.
Also, for all n, A225650(a(n)) = a(n) and A225655(a(n)) = A000793(a(n)).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    g:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while not irem(g(k), k)=0 do od; k
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, May 22 2013
  • Mathematica
    Reap[For[n=1, n <= 40, n++, If[Divisible[Max[LCM @@@ IntegerPartitions[n] ], n], Sow[n]]]][[2, 1]]
    (* or, for a large number of terms: *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n - p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Reap[For[k=1, k <= 1000, k++, If[Divisible[g[k], k], Sow[ k]]]][[2, 1]] (* Jean-François Alcover, Feb 28 2016, after Alois P. Heinz *)

A225653 Numbers n such that A225634(n) = A225644(n).

Original entry on oeis.org

0, 1, 21, 30, 33, 35, 36, 40, 42, 44, 48, 51, 52, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 88, 91, 92, 96
Offset: 0

Views

Author

Antti Karttunen, May 16 2013

Keywords

Comments

Positions of zeros in A225654.

Crossrefs

A255429 Numbers with a prime number of nontrivial divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 196
Offset: 1

Views

Author

Rory Glover, Feb 22 2015

Keywords

Comments

Empirically, numbers in this sequence seem to have few divisors.
This sequence appears to be the union of A130763 and the squares of A225649. - Kellen Myers, Apr 21 2015

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | IsPrime(NumberOfDivisors(n)-2)]; // Vincenzo Librandi, Apr 21 2015
    
  • Mathematica
    seq[n_] := Select[Range[n], PrimeQ[DivisorSigma[0, #] - 2] &] (* Kellen Myers, Apr 21 2015 *)
  • PARI
    isok(m) = isprime(numdiv(m)-1); \\ Michel Marcus, Jan 13 2023

Formula

{n: A070824(n) in A000040}.

Extensions

Terms fixed by Kellen Myers, Apr 21 2015
Name corrected by Michel Marcus, Jan 13 2023
Showing 1-4 of 4 results.