cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060341 Non-adding primes: next term is smallest prime not the sum of any primes so far.

Original entry on oeis.org

2, 3, 7, 11, 17, 41, 47, 83, 89, 307, 311, 613, 617, 919, 2801, 3109, 3413, 9283, 15461, 25087, 37781, 87613, 106181, 284509, 296591, 618269, 1196609, 1774921, 3564677, 5339287, 9818789, 14295223, 23196731, 46393469, 93691861, 98171363, 190948399, 429204473
Offset: 1

Views

Author

Jason Earls, Apr 10 2001

Keywords

Comments

Primes can only be used once in any sum.

Examples

			5 is not included because 2 + 3 = 5. Given 2, 3, 7 we can get 5 but not 11, so term after 7 is 11.
13 is not included because 2 + 11 = 13.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(p=2, i, j, s, t, u, v=[2, 1], w); print1(p); for(n=2, nn, u=0; i=1; j=1; w=List([]); s=0; t=1; while(i<=#v, if(j>#v, if(i%2==t, s+=v[i], t=!t; listput(w, s); s=v[i]); i++, if(v[i]>u, if((i%2&&j%2)==t, s+=u, t=!t; listput(w, s); s=u); v[i]-=u; if(j++<=#v, u=v[j]), if((i%2&&j%2)==t, s+=v[i], t=!t; listput(w, s); s=v[i]); if(v[i]==u, if(j++<=#v, u=v[j]), u-=v[i]); i++))); listput(w, s); v=w; s=0; i=0; until(isprime(p), p++; while(s<=p&&i<#v, s+=v[i++]); if(s>p&&!(i%2), p=s)); print1(", ", v[1]=p)); \\ Jinyuan Wang, Dec 17 2024

Extensions

a(37)-a(53) from Jacques Tramu, Jan 11 2005
Offset changed to 1 by Jinyuan Wang, Dec 17 2024

A226076 Lexicographically least sequence of squares that are sum-free.

Original entry on oeis.org

1, 4, 9, 16, 36, 64, 144, 256, 289, 576, 1024, 1156, 2304, 4096, 4624, 9216, 16384, 18496, 36864, 65536, 73984, 147456, 262144, 295936, 589824, 1048576, 1183744, 2359296, 4194304, 4734976, 9437184, 16777216, 18939904, 37748736, 67108864, 75759616, 150994944
Offset: 1

Views

Author

Frank M Jackson, May 25 2013

Keywords

Comments

A sum-free sequence has no term that is the sum of a subset of its previous terms. There are an infinite number of sequences that are subsets of the squares and sum-free. This sequence is lexicographically the first.

Examples

			a(10)=576 as 576 is the next square after a(9)=289 that cannot be formed from distinct sums of a(1),...,a(9) (1,4,9,16,36,64,144,256,289).
		

Crossrefs

Cf. A225947.

Programs

  • Mathematica
    memberQ[n1_, k1_] := If[Select[IntegerPartitions[n1^2, Length[k1], k1], Sort@#==Union@# &]=={}, False, True]; k={1}; n=1; While[Length[k]<20, (If[!memberQ[n, k], k=Append[k, n^2]]; n++)]; k

Formula

Conjecture: a(n) = 4*a(n-3) for n>9. G.f.: -x*(33*x^8 +112*x^7 +80*x^6 +28*x^5 +20*x^4 +12*x^3 +9*x^2 +4*x +1) / (4*x^3 -1). - Colin Barker, May 28 2013

Extensions

More terms from Colin Barker, May 28 2013
a(33)-a(37) from Donovan Johnson, Dec 17 2013

A379045 a(1) = 1. For n > 1, a(n) is the least odd prime p which cannot be represented as the sum of a subset of the previous terms.

Original entry on oeis.org

1, 3, 5, 7, 17, 19, 53, 67, 173, 211, 439, 997, 1993, 2801, 4969, 6791, 13697, 18661, 50849, 50971, 106669, 152729, 310127, 412333, 826097, 1134841, 2271053, 2991883, 4952809, 7223627, 18574201, 20534933, 40243939, 60778433, 100713031, 222270319, 241670423, 563829493
Offset: 1

Views

Author

Chittaranjan Pardeshi, Dec 14 2024

Keywords

Examples

			11 is not a term since 11 = 7 + 3 + 1.
13 is not a term since 13 = 7 + 5 + 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; n=0 or i>0 and s(i)>=n
          and (b(n, i-1) or a(i)<=n and b(n-a(i), i-1))
        end:
    s:= proc(n) option remember; `if`(n<1, 0, s(n-1)+a(n)) end:
    a:= proc(n) option remember; local p; p:= a(n-1);
          while b(p, n-1) do p:= nextprime(p) od; p
        end: a(1), a(2):=1, 3:
    seq(a(n), n=1..26);  # Alois P. Heinz, Dec 15 2024
  • Mathematica
    b[n_, i_] := b[n, i] = n == 0 || i > 0 && s[i] >= n
       && (b[n, i-1] || a[i] <= n && b[n - a[i], i-1]);
    s[n_] := s[n] = If[n < 1, 0, s[n-1] + a[n]];
    a[n_] := a[n] = Module[{p = a[n-1]},
       While[b[p, n-1], p = NextPrime[p]]; p];
    {a[1], a[2]} = {1, 3};
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 02 2025, after Alois P. Heinz *)

Extensions

a(21)-a(37) from Alois P. Heinz, Dec 14 2024
a(38) from Jinyuan Wang, Dec 16 2024
Showing 1-3 of 3 results.