A225972 The number of binary pattern classes in the (2,n)-rectangular grid with 3 '1's and (2n-3) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
0, 0, 1, 6, 14, 32, 55, 94, 140, 208, 285, 390, 506, 656, 819, 1022, 1240, 1504, 1785, 2118, 2470, 2880, 3311, 3806, 4324, 4912, 5525, 6214, 6930, 7728, 8555, 9470, 10416, 11456, 12529, 13702, 14910, 16224, 17575, 19038, 20540, 22160, 23821, 25606, 27434, 29392
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Black Bishop Graph
- Eric Weisstein's World of Mathematics, Edge Count
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[(1/4)*(Binomial(2*(n-1),3)+2*Binomial(n-2,1)*(1/2)*(1+(-1)^n)): n in [1..50]]; // Vincenzo Librandi, Sep 04 2013
-
Maple
A225972:=n->(n-1)*(4*n^2-2*n-3*(-1)^n+3)/12; seq(A225972(n), n=0..40); # Wesley Ivan Hurt, Mar 02 2014
-
Mathematica
Table[(n - 1)*(4*n^2 - 2*n - 3*(-1)^n + 3)/12, {n, 0, 40}] (* Bruno Berselli, May 29 2013 *) CoefficientList[Series[x^2 (1 + 4 x + x^2 + 2 x^3) / ((1 + x)^2 (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 6, 14, 32, 55}, 20] (* Eric W. Weisstein, Jun 27 2017 *)
-
R
a <- vector() for(n in 0:40) a[n] <- (1/4)*(choose(2*(n-1),3) + 2*choose(n-2,1)*(1/2)*(1+(-1)^n)) a # Yosu Yurramendi and María Merino, Aug 21 2013
Formula
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) with n > 5, a(0)=0, a(1)=0, a(2)=1, a(3)=6, a(4)=14, a(5)=32.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 4*(n-4)*(-1)^n with n > 3, a(0)=0, a(1)=0, a(2)=1, a(3)=6.
G.f.: x^2*(1 + 4*x + x^2 + 2*x^3)/((1+x)^2*(1-x)^4). - Bruno Berselli, May 29 2013
a(n) = (1/4)*(binomial(2*(n-1),3) + 2*binomial(n-2,1)*(1/2)*(1+(-1)^n)). - Yosu Yurramendi and María Merino, Aug 21 2013
Extensions
More terms from Vincenzo Librandi, Sep 04 2013
Comments