A226095 Primes formed by concatenation (exponent then prime) of prime factorizations of the positive integers.
13, 1213, 17, 23, 2213, 113, 1217, 1223, 12113, 131, 137, 12119, 22111, 3217, 167, 173, 179, 43, 221317, 12143, 22123, 197, 1103, 1109, 4217, 22129, 17117, 211, 12161, 32117, 13147, 1327, 1151, 32119, 23117, 15131, 17123, 1163, 1213129, 13159, 1181, 1217113
Offset: 1
Examples
44 = 2^2 * 11^1 yields 22111, which is prime and so enters the sequence. Powers precede the prime factor.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A105435 (primes which with a 1 prepended stay prime).
Programs
-
Maple
select(isprime, [seq((l-> parse(cat(seq([i[2], i[1]][], i=l))))(sort(ifactors(n)[2], (x, y)-> x[1]
Alois P. Heinz, Nov 24 2017 -
Mathematica
t = {}; Do[s = FromDigits[Flatten[IntegerDigits /@ RotateLeft /@ FactorInteger[n]]]; If[PrimeQ[s], AppendTo[t, s]], {n, 2, 200}]; t (* T. D. Noe, May 28 2013 *) Select[FromDigits[Flatten[IntegerDigits/@Reverse/@FactorInteger[#]]]&/@ Range[2, 300],PrimeQ] (* Harvey P. Dale, Nov 24 2017 *)
-
PARI
list(maxx)={ n=3;cnt=0; while(n<=maxx, f=factorint(n); old=0; \\ as we concatenate, code is f{digits of each p.f.&pwr} for (i=1,#f[,1], new=(10^length( Str(f[i,1]) ) *f[i,2] + f[i,1]); q=new+(10^length(Str(new)) )*old; old=q ); if(isprime(q), print("entry from", n, " ", q); cnt++); n++; while(isprime(n),n++); ); }
Comments