A226177 a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.
1, -2, -2, 0, -2, 4, -2, 0, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, 0, 0, 4, 0, 0, -2, -8, -2, 0, 4, 4, 4, 0, -2, 4, 4, 0, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, 0, 4, 0, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, 0, -2, 0, 4, 0, 4, 4, 4, 0, -2, 0, 0, 0, -2, -8, -2, 0, -8
Offset: 1
Examples
a(5) = mu(5)*d(5) = (-1)(2) = -2.
Links
Programs
-
Maple
with(numtheory); a:=n->mobius(n)*tau(n); seq(a(k),k=1..100);
-
Mathematica
Table[MoebiusMu[n] DivisorSigma[0, n], {n, 105}] (* Michael De Vlieger, Jul 23 2017 *)
-
PARI
A226177(n) = moebius(n)*numdiv(n); \\ Antti Karttunen, Jul 23 2017
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X))[n], ", ")); \\ Vaclav Kotesovec, Aug 21 2021
-
Scheme
(define (A226177 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) -2 0) (A226177 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
Formula
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024
Extensions
More terms from Antti Karttunen, Jul 23 2017
Name changed by David A. Corneth, Jul 23 2017
Comments