cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226177 a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.

Original entry on oeis.org

1, -2, -2, 0, -2, 4, -2, 0, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, 0, 0, 4, 0, 0, -2, -8, -2, 0, 4, 4, 4, 0, -2, 4, 4, 0, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, 0, 4, 0, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, 0, -2, 0, 4, 0, 4, 4, 4, 0, -2, 0, 0, 0, -2, -8, -2, 0, -8
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2013

Keywords

Comments

The prime numbers are the only solutions to mu(n)*d(n) = -2.
Multiplicative with a(p) = -2, a(p^e) = 0, e > 1.
The Moebius inverse is A076479, and the Dirichlet inverse A061142. - R. J. Mathar, Jun 03 2013
Möbius transform of (-1)^omega(n). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(5) = mu(5)*d(5) = (-1)(2) = -2.
		

Crossrefs

Cf. A000005, A000040, A001358, A008683, A074823 (absolute values), A001221.

Programs

Formula

a(n) = mu(n)*d(n) = A008683(n)*A000005(n).
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024

Extensions

More terms from Antti Karttunen, Jul 23 2017
Name changed by David A. Corneth, Jul 23 2017