cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076479 a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 14 2002

Keywords

Comments

Multiplicative: a(1) = 1, a(n) for n >=2 is sign of parity of number of distinct primes dividing n. a(p) = -1, a(pq) = 1, a(pq...z) = (-1)^k, a(p^k) = -1, where p,q,.. z are distinct primes and k natural numbers. - Jaroslav Krizek, Mar 17 2009
a(n) is the unitary Moebius function, i.e., the inverse of the constant 1 function under the unitary convolution defined by (f X g)(n)= sum of f(d)g(n/d), where the sum is over the unitary divisors d of n (divisors d of n such that gcd(d,n/d)=1). - Laszlo Toth, Oct 08 2009

Crossrefs

Programs

  • Haskell
    a076479 = a008683 . a007947  -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    A076479 := proc(n)
        (-1)^A001221(n) ;
    end proc:
    seq(A076479(n),n=1..80) ; # R. J. Mathar, Nov 02 2016
  • Mathematica
    Table[(-1)^PrimeNu[n], {n,50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    N=66;
    mu=vector(N); mu[1]=1;
    { for (n=2,N,
        s = 0;
        fordiv (n,d,
            if (gcd(d,n/d)!=1, next() ); /* unitary divisors only */
            s += mu[d];
        );
        mu[n] = -s;
    ); };
    mu /* Joerg Arndt, May 13 2011 */
    /* omitting the line if ( gcd(...)) gives the usual Moebius function */
    
  • PARI
    a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
    
  • Python
    from math import prod
    from sympy.ntheory import mobius, primefactors
    def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021

Formula

a(n) = A008683(A007947(n)).
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
a(A030230(n)) = -1; a(A030231(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023

A074823 a(n) = 2^omega(n)*mu(n)^2.

Original entry on oeis.org

1, 2, 2, 0, 2, 4, 2, 0, 0, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0, 4, 4, 2, 0, 0, 4, 0, 0, 2, 8, 2, 0, 4, 4, 4, 0, 2, 4, 4, 0, 2, 8, 2, 0, 0, 4, 2, 0, 0, 0, 4, 0, 2, 0, 4, 0, 4, 4, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 4, 8, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 0, 4, 2, 0, 4, 4, 4, 0, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 0, 2, 8, 2, 0, 8
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 100}] (* Vaclav Kotesovec, Aug 20 2021 *)
    f[p_, e_] :=If[e==1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = 2^omega(n)*moebius(n)^2; \\ Michel Marcus, Jul 23 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    (define (A074823 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 0) (A074823 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
    

Formula

Sum_{k=1..n} a(k) = A069201(n).
Multiplicative with a(p)=2, a(p^e)=0, e > 1.
a(n) = A034444(n)*A008966(n). - R. J. Mathar, Apr 15 2011
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 + 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = abs(A226177(n)). - Antti Karttunen, Jul 23 2017
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

Extensions

Additional comments from Vladeta Jovovic, Dec 30 2002

A326814 Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1 - 2 * p^(-s)).

Original entry on oeis.org

1, -3, -3, 2, -3, 9, -3, 0, 2, 9, -3, -6, -3, 9, 9, 0, -3, -6, -3, -6, 9, 9, -3, 0, 2, 9, 0, -6, -3, -27, -3, 0, 9, 9, 9, 4, -3, 9, 9, 0, -3, -27, -3, -6, -6, 9, -3, 0, 2, -6, 9, -6, -3, 0, 9, 0, 9, 9, -3, 18, -3, 9, -6, 0, 9, -27, -3, -6, 9, -27, -3, 0, -3, 9, -6
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2019

Keywords

Comments

Moebius transform applied twice to A076479 (unitary Moebius function).

Crossrefs

Cf. A001221, A007428, A008683, A046099 (positions of 0's), A076479, A182139 (Dirichlet inverse), A226177, A326415, A326815.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] MoebiusMu[d] 2^PrimeNu[d], {d, Divisors[n]}], {n, 1, 75}]
    f[p_, e_] := Which[e == 1, -3, e == 2, 2, e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*2^omega(d)); \\ Michel Marcus, Oct 26 2020
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X)*(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * mu(d) * 2^omega(d), where mu = A008683 and omega = A001221.
Multiplicative with a(p^e) = -3 if e = 1, 2 if e = 2, and 0 otherwise. - Amiram Eldar, Oct 26 2020

A062563 a(n) = Sum_{k=1..n} d(k)* mu(k), where d(k) is the number of divisors function.

Original entry on oeis.org

1, -1, -3, -3, -5, -1, -3, -3, -3, 1, -1, -1, -3, 1, 5, 5, 3, 3, 1, 1, 5, 9, 7, 7, 7, 11, 11, 11, 9, 1, -1, -1, 3, 7, 11, 11, 9, 13, 17, 17, 15, 7, 5, 5, 5, 9, 7, 7, 7, 7, 11, 11, 9, 9, 13, 13, 17, 21, 19, 19, 17, 21, 21, 21, 25, 17, 15, 15, 19, 11, 9, 9, 7, 11, 11, 11, 15, 7, 5, 5, 5, 9, 7, 7, 11, 15, 19, 19, 17, 17, 21, 21, 25, 29, 33, 33, 31
Offset: 1

Views

Author

Jason Earls, Jul 03 2001

Keywords

Crossrefs

Partial sums of A226177.

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[0,n]MoebiusMu[n],{n,100}]] (* Harvey P. Dale, Aug 15 2016 *)
  • PARI
    v=[]; for(n=1,250,v=concat(v,sum(k=1,n,numdiv(k)*moebius(k)))); v

Formula

Also a(n) = Sum_{k=1..n} 2^omega(k)*mu(k). - Benoit Cloitre, Jun 13 2007

A349925 Dirichlet g.f.: Product_{k>=2} (1 - 2 * k^(-s)).

Original entry on oeis.org

1, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 6, -2, 2, 2, 2, -2, 6, -2, 6, 2, 2, -2, 2, -2, 2, 2, 6, -2, 2, -2, 6, 2, 2, 2, 2, -2, 2, 2, 2, -2, 2, -2, 6, 6, 2, -2, -2, -2, 6, 2, 6, -2, 2, 2, 2, 2, 2, -2, -6, -2, 2, 6, -2, 2, 2, -2, 6, 2, 2, -2, -6, -2, 2, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

Showing 1-5 of 5 results.