A226199 a(n) = 7^n + n.
1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (9,-15,7).
Crossrefs
Programs
-
Magma
[7^n+n: n in [0..20]];
-
Magma
I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
-
Mathematica
Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x] LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
-
PARI
a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025
Comments