cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226292 (10*n^2+4*n+(1-(-1)^n))/8.

Original entry on oeis.org

2, 6, 13, 22, 34, 48, 65, 84, 106, 130, 157, 186, 218, 252, 289, 328, 370, 414, 461, 510, 562, 616, 673, 732, 794, 858, 925, 994, 1066, 1140, 1217, 1296, 1378, 1462, 1549, 1638, 1730, 1824, 1921, 2020, 2122, 2226, 2333, 2442, 2554, 2668, 2785, 2904, 3026, 3150
Offset: 1

Views

Author

Yosu Yurramendi, Jun 02 2013

Keywords

Comments

The number of binary pattern classes in the (3,n)-rectangular grid with 2 '1's and (n-2) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other, n<10.
Column k=2 of A226290.
For n even, a(n) is A202803; for n odd, a(n) is A190816.
Number of lattice points (x,y) in the region bounded by y < 3x, y > x/2 and x <= n. - Wesley Ivan Hurt, Oct 31 2014

Crossrefs

Programs

  • Magma
    [(10*n^2+4*n+(1-(-1)^n))/8: n in [1..50]]; // Vincenzo Librandi, Sep 04 2013
  • Maple
    A226292:=n->(10*n^2+4*n+(1-(-1)^n))/8: seq(A226292(n), n=1..50); # Wesley Ivan Hurt, Oct 31 2014
  • Mathematica
    CoefficientList[Series[(2 + 2 x + x^2) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *)
    LinearRecurrence[{2,0,-2,1},{2,6,13,22},60] (* Harvey P. Dale, Feb 01 2019 *)

Formula

a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>4, a(1)=2, a(2)=6, a(3)=13, a(4)=22.
a(n) = 2*a(n-2)-a(n-4)+10 for n>4, a(1)=2, a(2)=6, a(3)=13, a(4)=22.
a(n) = a(n-1)+a(n-2)-a(n-3)+5 for n>3, a(1)=2, a(2)=6, a(3)=13.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+(-1)^n for n>3, a(1)=2, a(2)=6, a(3)=13.
a(n) = 2*a(n-1)-a(n-2)+2+(1-(-1)^n)/2 for n>2, a(1)=2, a(2)=6.
G.f.: x*(2+2*x+x^2)/((1+x)*(1-x)^3). - Bruno Berselli, Jun 03 2013

Extensions

More terms from Vincenzo Librandi, Sep 04 2013