cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226490 a(n) = n*(19*n-15)/2.

Original entry on oeis.org

0, 2, 23, 63, 122, 200, 297, 413, 548, 702, 875, 1067, 1278, 1508, 1757, 2025, 2312, 2618, 2943, 3287, 3650, 4032, 4433, 4853, 5292, 5750, 6227, 6723, 7238, 7772, 8325, 8897, 9488, 10098, 10727, 11375, 12042, 12728, 13433, 14157, 14900, 15662, 16443, 17243, 18062
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th hendecagonal number and n-th dodecagonal number.
Sum of reciprocals of a(n), for n > 0: 0.59314195720519963010713286193275...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=19: see list in A226488.

Programs

  • Magma
    [n*(19*n-15)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,23]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (19 n - 15)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 17 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,2,23},50] (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    a(n)=n*(19*n-15)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: x*(2+17*x)/(1-x)^3.
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(4 + 19*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A051873(n). (End)