A226490 a(n) = n*(19*n-15)/2.
0, 2, 23, 63, 122, 200, 297, 413, 548, 702, 875, 1067, 1278, 1508, 1757, 2025, 2312, 2618, 2943, 3287, 3650, 4032, 4433, 4853, 5292, 5750, 6227, 6723, 7238, 7772, 8325, 8897, 9488, 10098, 10727, 11375, 12042, 12728, 13433, 14157, 14900, 15662, 16443, 17243, 18062
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(19*n-15)/2: n in [0..50]];
-
Magma
I:=[0,2,23]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
-
Mathematica
Table[n (19 n - 15)/2, {n, 0, 50}] CoefficientList[Series[x (2 + 17 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *) LinearRecurrence[{3,-3,1},{0,2,23},50] (* Harvey P. Dale, Aug 17 2017 *)
-
PARI
a(n)=n*(19*n-15)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: x*(2+17*x)/(1-x)^3.
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(4 + 19*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A051873(n). (End)
Comments