cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A051873 21-gonal numbers: a(n) = n*(19n - 17)/2.

Original entry on oeis.org

0, 1, 21, 60, 118, 195, 291, 406, 540, 693, 865, 1056, 1266, 1495, 1743, 2010, 2296, 2601, 2925, 3268, 3630, 4011, 4411, 4830, 5268, 5725, 6201, 6696, 7210, 7743, 8295, 8866, 9456, 10065, 10693, 11340, 12006, 12691, 13395, 14118
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ... and the parallel line from 1, in the direction 1, 60, ..., in the square spiral whose vertices are the generalized 21-gonal numbers. - Omar E. Pol, Jul 18 2012
Partial sums of A215144. - Leo Tavares, Mar 17 2023

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Crossrefs

Programs

Formula

G.f.: x*(1+18*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 19*n+a(n-1)-18 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A226490(n) - n. - Bruno Berselli, Jun 11 2013
a(19*a(n)+172*n+1) = a(19*a(n)+172*n) + a(19*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 19/21. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 19*x^2/2). - Nikolaos Pantelidis, Feb 06 2023

A237618 a(n) = n*(n + 1)*(19*n - 16)/6.

Original entry on oeis.org

0, 1, 22, 82, 200, 395, 686, 1092, 1632, 2325, 3190, 4246, 5512, 7007, 8750, 10760, 13056, 15657, 18582, 21850, 25480, 29491, 33902, 38732, 44000, 49725, 55926, 62622, 69832, 77575, 85870, 94736, 104192, 114257, 124950, 136290, 148296, 160987, 174382
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2014

Keywords

Comments

Also 21-gonal (or icosihenagonal) pyramidal numbers.

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  20;
   3,  40,  39;
   4,  60,  78,  58;
   5,  80, 117, 116, 77;
   6, 100, 156, 174, 154, 96;
   7, 120, 195, 232, 231, 192, 115;
   8, 140, 234, 290, 308, 288, 230, 134;
   9, 160, 273, 348, 385, 384, 345, 268, 153;
  10, 180, 312, 406, 462, 480, 460, 402, 306, 172; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 19*r-18 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (nineteenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(19*n-16)/6: n in [0..40]];
    
  • Magma
    I:=[0,1,22,82]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    Table[n(n+1)(19n-16)/6, {n, 0, 40}]
    CoefficientList[Series[x(1+18x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • SageMath
    b=binomial; [b(n+2,3) +18*b(n+1,3) for n in (0..50)] # G. C. Greubel, May 27 2022

Formula

G.f.: x*(1 + 18*x) / (1 - x)^4.
a(n) = (1/2)*( n*A226490(n) - Sum_{j=0..n-1} A226490(j) ).
a(n) = Sum_{i=0..n-1} (n-i)*(19*i+1), for n>0; see the generalization in A237616 (Formula field).
From G. C. Greubel, May 27 2022: (Start)
a(n) = binomial(n+2, 3) + 18*binomial(n+1, 3).
E.g.f.: (1/6)*x*(6 + 60*x + 19*x^2)*exp(x). (End)
Showing 1-3 of 3 results.