cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226516 Number of (18,7)-reverse multiples with n digits.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 8, 13, 11, 17, 15, 23, 20, 31, 26, 41, 34, 54, 45, 71, 60, 94, 80, 125, 106, 166, 140, 220, 185, 291, 245, 385, 325, 510, 431, 676, 571, 896, 756, 1187, 1001, 1572, 1326, 2082, 1757, 2758, 2328, 3654, 3084, 4841, 4085, 6413
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2013

Keywords

Comments

Comment from Emeric Deutsch, Aug 21 2016 (Start):
Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let
F(x) = x^{a0} + x^{a1} + x^{a2} + ... .
Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975):
(1 + F(x))/(1 - F(x^2))
Playing with this, I have found easily that
1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4);
2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6);
3. number of palindromic compositions of n into {1,4} = A226517(n+10);
4. number of palindromic compositions of n into {1,5} = A226516(n+11).
(End)

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember;
    if
    n <= 5 then 0
    elif n=6 then 1
    elif n <= 10 then 0
    elif n <= 12 then 1
    else f(n-2)+f(n-10)
    fi;
    end;
    [seq(f(n),n=0..100)]
  • Mathematica
    CoefficientList[Series[x^6 (1 - x^2 + x^5 + x^6) / (1 - x^2 - x^10), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *)
    LinearRecurrence[{0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1,1},80] (* Harvey P. Dale, Jun 17 2015 *)

Formula

G.f.: x^6*(1+x)*(1-x+x^5)/(1-x^2-x^10).
a(n) = a(n-2) + a(n-10) for n>12, with initial values a(0)-a(12) equal to 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1. [Bruno Berselli, Jun 17 2013]
a(2n+1) = A003520(n-5). a(2n) = A098523(n-6). - R. J. Mathar, Dec 13 2022