A226516 Number of (18,7)-reverse multiples with n digits.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 8, 13, 11, 17, 15, 23, 20, 31, 26, 41, 34, 54, 45, 71, 60, 94, 80, 125, 106, 166, 140, 220, 185, 291, 245, 385, 325, 510, 431, 676, 571, 896, 756, 1187, 1001, 1572, 1326, 2082, 1757, 2758, 2328, 3654, 3084, 4841, 4085, 6413
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. E. Hogatt, M. Bicknell, Palindromic Compositions, Fib. Quart. 13(4) (1975) 350-356
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,0,0,1).
Programs
-
Maple
f:=proc(n) option remember; if n <= 5 then 0 elif n=6 then 1 elif n <= 10 then 0 elif n <= 12 then 1 else f(n-2)+f(n-10) fi; end; [seq(f(n),n=0..100)]
-
Mathematica
CoefficientList[Series[x^6 (1 - x^2 + x^5 + x^6) / (1 - x^2 - x^10), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *) LinearRecurrence[{0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1,1},80] (* Harvey P. Dale, Jun 17 2015 *)
Formula
G.f.: x^6*(1+x)*(1-x+x^5)/(1-x^2-x^10).
a(n) = a(n-2) + a(n-10) for n>12, with initial values a(0)-a(12) equal to 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1. [Bruno Berselli, Jun 17 2013]
Comments