cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A226856 Numbers A226770((prime(n))^2-1).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 3, 5, 1, 46, 1, 5, 66, 1, 1, 3, 3, 3, 10, 3, 1, 1, 172, 1, 1, 398, 5, 132, 255, 1, 336, 41, 1, 3, 615, 1, 462, 918, 283, 1, 1, 1, 453, 1, 11, 713, 1503, 311, 1, 112, 1, 308, 2272, 1, 788, 481, 2301, 1, 2686, 1358, 3, 3, 2651, 3346, 1
Offset: 1

Views

Author

Vladimir Shevelev, Jun 19 2013

Keywords

Comments

a(n) = 1 iff (prime(n))^2 + prime(n) - 1 is prime (A053184).

Crossrefs

Programs

  • Mathematica
    Table[(div=Most[Divisors[n+1]]; Length[FixedPoint[Union[Flatten[AppendTo[div, Map[Most[Rest[Divisors[n+#]]]&, #]]]]&, div]]-1), {n, Prime[Range[40]]^2-1}] (* Peter J. C. Moses, Jun 20 2013 *)

Extensions

More terms from Peter J. C. Moses, Jun 20 2013

A226859 Number of prime sums in the process described in A226770.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 2, 3, 1, 4, 1, 4, 2, 5, 1, 5, 1, 6, 3, 7, 1, 6, 1, 7, 4, 7, 3, 8, 1, 9, 4, 9, 1, 9, 1, 9, 4, 10, 1, 9, 2, 10, 2, 11, 1, 11, 2, 13, 5, 14, 1, 13, 1, 12, 5, 12, 5, 13, 1, 13, 6, 14, 1, 14, 1, 13, 6, 14, 7, 15, 1, 15, 3, 15
Offset: 1

Views

Author

Vladimir Shevelev, Jun 20 2013

Keywords

Examples

			Let n=76. We have 77; d=7,11; 76+7=83 (prime), 76+11=87; d=3,29; 76+3=79(prime), 76+29=105; d=5,15,21,35; 76+5=81, 76+15=91, 76+21=97(prime), 76+35=111; d=9,27,13,37, 76+9=85,76+27=103(prime),76+13=89(prime), 76+37=113(prime), d=17, 76+17=93; d=31, 76+31=107(prime). Thus the set of prime sums is {83,79,97,103,89,113,107} and therefore a(76)=7.
		

Crossrefs

Programs

Formula

a(n) = 1 iff either n = 5 or n + 1 = p or n + 1 = q^2, where p,q and q^2+q-1 are primes.

Extensions

More terms from Peter J. C. Moses, Jun 20 2013

A227129 Semiprimes n = p*q, p

Original entry on oeis.org

15, 51, 85, 91, 133, 145, 235, 249, 265, 427, 451, 493, 519, 559, 565, 589, 591, 681, 721, 871, 879, 1003, 1149, 1177, 1189, 1207, 1411, 1441, 1509, 1561, 1603, 1651, 1837, 1945, 2059, 2071, 2119, 2227, 2335, 2391, 2419, 2599, 2661, 2827, 2869, 2965, 2995
Offset: 1

Views

Author

Vladimir Shevelev, Jul 02 2013

Keywords

Comments

Subsequence of A006881.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],(Last[#2]=={1,1}&&And@@PrimeQ[#1+First[#2]-1]&)[#1,Transpose[FactorInteger[#1]]]&] (* Peter J. C. Moses, Jul 03 2013 *)
    spQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},fi[[2]]=={1,1}&&AllTrue[ n-1+fi[[1]],PrimeQ]]; Select[Range[3000],spQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2015 *)

Formula

A226770(a(n)-1) = 2.

A227276 Primes p for which p^2 + p - 1 = q*r (q

Original entry on oeis.org

7, 17, 23, 61, 67, 71, 79, 151, 307, 311, 383, 389, 409, 439, 613, 677, 1559, 1627, 1637, 2377, 2719, 2801, 3407, 3821, 4229, 4799, 4919, 5557, 5641, 5743, 5779, 5851, 5867, 6133, 6733, 7121, 7723, 8009, 8527, 8573, 10163, 10729, 11317, 11789, 11987, 14107, 14629, 14653, 14669, 17189, 17401, 18077
Offset: 1

Views

Author

Vladimir Shevelev, Jul 04 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]],And@@PrimeQ[#1^2-1+First[#2]]&&Last[#2]=={1,1}&[#1,Transpose[FactorInteger[#^2+#-1]]]&] (* Peter J. C. Moses, Jul 05 2013 *)

Formula

A226770(a^2(n) - 1) = 3.

Extensions

More terms from Peter J. C. Moses.

A226938 Primes p such that p^4 + p - 1, p^4 + p^2 - 1, p^4 + p^3 - 1 are also prime.

Original entry on oeis.org

2, 3, 13, 43, 4909, 21283, 47417, 57301, 59951, 72647, 98713, 132623, 135841, 149101, 153371, 285463, 343489, 355519, 360823, 375101, 396997, 405901, 447197, 452377, 458797, 501173, 532379, 557153, 605947, 610199, 614071, 616079, 627901, 644051, 656141, 668417
Offset: 1

Views

Author

Vladimir Shevelev, Jul 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]],And@@PrimeQ[#1+{#2,#2^2,#2^3}]&[#^4-1,#]&] (* Peter J. C. Moses, Jul 05 2013 *)
    Select[Prime[Range[60000]],AllTrue[#^4-1+#^Range[3],PrimeQ]&] (* Harvey P. Dale, Mar 26 2023 *)

Formula

A226770(a^4(n) - 1) = 3.

Extensions

More terms from Peter J. C. Moses
Showing 1-5 of 5 results.