A226874 Number T(n,k) of n-length words w over a k-ary alphabet {a1, a2, ..., ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 10, 12, 24, 0, 1, 15, 50, 60, 120, 0, 1, 41, 180, 300, 360, 720, 0, 1, 63, 497, 1260, 2100, 2520, 5040, 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 0, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880
Offset: 0
Examples
T(4,2) = 10: aaab, aaba, aabb, abaa, abab, abba, baaa, baab, baba, bbaa. T(4,3) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa. T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 1, 3, 6; 0, 1, 10, 12, 24; 0, 1, 15, 50, 60, 120; 0, 1, 41, 180, 300, 360, 720; 0, 1, 63, 497, 1260, 2100, 2520, 5040; 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Iverson bracket
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: T:= (n, k)-> `if`(n*k=0, `if`(n=k, 1, 0), n!*b(n, 1, k)): seq(seq(T(n, k), k=0..n), n=0..12); # second Maple program: b:= proc(n, i) option remember; expand( `if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, i-1)* combinat[multinomial](n, n-i*j, i$j), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..12);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from first Maple *)
-
PARI
T(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))} {my(t=T(10)); for(n=1, #t, for(k=0, n-1, print1(polcoeff(t[n], k), ", ")); print)} \\ Andrew Howroyd, Dec 20 2017
Comments