A227146 Numbers that are congruent to {5, 11, 13, 14, 19} modulo 24.
5, 11, 13, 14, 19, 29, 35, 37, 38, 43, 53, 59, 61, 62, 67, 77, 83, 85, 86, 91, 101, 107, 109, 110, 115, 125, 131, 133, 134, 139, 149, 155, 157, 158, 163, 173, 179, 181, 182, 187, 197, 203, 205, 206, 211, 221, 227, 229, 230, 235, 245, 251, 253, 254, 259, 269
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Haskell
a227146 n = a227146_list !! (n-1) a227146_list = [5,11,13,14,19] ++ map (+ 24) a227146_list
-
Mathematica
Select[Range[300],MemberQ[{5,11,13,14,19},Mod[#,24]]&] (* or *) LinearRecurrence[{1,0,0,0,1,-1},{5,11,13,14,19,29},60] (* Harvey P. Dale, Apr 30 2018 *)
Formula
G.f.: x*(1+x)*(5*x^4+x^2+x+5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 28 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 50 - (n mod 5) + 19*((n+1) mod 5) + 14*((n+2) mod 5) - 6*((n+3) mod 5) - 26*((n+4) mod 5))/25. (End)
Comments