cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227146 Numbers that are congruent to {5, 11, 13, 14, 19} modulo 24.

Original entry on oeis.org

5, 11, 13, 14, 19, 29, 35, 37, 38, 43, 53, 59, 61, 62, 67, 77, 83, 85, 86, 91, 101, 107, 109, 110, 115, 125, 131, 133, 134, 139, 149, 155, 157, 158, 163, 173, 179, 181, 182, 187, 197, 203, 205, 206, 211, 221, 227, 229, 230, 235, 245, 251, 253, 254, 259, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2013

Keywords

Comments

A089911(a(n)) = 5.

Crossrefs

Programs

  • Haskell
    a227146 n = a227146_list !! (n-1)
    a227146_list = [5,11,13,14,19] ++ map (+ 24) a227146_list
  • Mathematica
    Select[Range[300],MemberQ[{5,11,13,14,19},Mod[#,24]]&] (* or *) LinearRecurrence[{1,0,0,0,1,-1},{5,11,13,14,19,29},60] (* Harvey P. Dale, Apr 30 2018 *)

Formula

G.f.: x*(1+x)*(5*x^4+x^2+x+5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 28 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 50 - (n mod 5) + 19*((n+1) mod 5) + 14*((n+2) mod 5) - 6*((n+3) mod 5) - 26*((n+4) mod 5))/25. (End)