cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A004771 a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.

Original entry on oeis.org

7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431
Offset: 0

Views

Author

Keywords

Comments

These numbers cannot be expressed as the sum of 3 squares. - Artur Jasinski, Nov 22 2006
These numbers cannot be perfect squares. - Cino Hilliard, Sep 03 2006
a(n-2), n >= 2, appears in the second column of triangle A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
The initial terms 7, 15, 23, 31 are the generating set for the rest of the sequence in the sense that, by Lagrange's Four Square Theorem, any number n of the form 8*k+7 can always be written as a sum of no fewer than four squares, and if n = a^2 + b^2 + c^2 + d^2, then (a mod 4)^2 + (b mod 4)^2 + (c mod 4)^2 + (d mod 4)^2 must be one of 7, 15, 23, 31. - Walter Kehowski, Jul 07 2014
Define a set of consecutive positive odd numbers {1, 3, 5, ..., 12*n + 9} and skip the number 6*n + 5. Then the contraharmonic mean of that set gives this sequence. For example, ContraharmonicMean[{1, 3, 7, 9}] = 7. - Hilko Koning, Aug 27 2018
Jacobi symbol (2, a(n)) = Kronecker symbol (a(n), 2) = 1. - Jianing Song, Aug 28 2018

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 246.

Crossrefs

Cf. A007522 (primes), subsequence of A047522.

Programs

Formula

O.g.f: (7 + x)/(1 - x)^2 = 8/(1 - x)^2 - 1/(1 - x). - R. J. Mathar, Nov 30 2007
a(n) = 2*a(n-1) - a(n-2) for n >= 2. - Vincenzo Librandi, May 28 2011
A056753(a(n)) = 7. - Reinhard Zumkeller, Aug 23 2009
a(n) = t(t(t(n))), where t(i) = 2*i + 1.
a(n) = A004767(2*n+1), for n >= 0. See also A004767(2*n) = A017101(n). - Wolfdieter Lang, Feb 03 2022
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: exp(x)*(7 + 8*x).
a(n) = A033954(n+1) - A033954(n). (End)

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A227144 Numbers that are congruent to {1, 2, 7, 17, 23} modulo 24.

Original entry on oeis.org

1, 2, 7, 17, 23, 25, 26, 31, 41, 47, 49, 50, 55, 65, 71, 73, 74, 79, 89, 95, 97, 98, 103, 113, 119, 121, 122, 127, 137, 143, 145, 146, 151, 161, 167, 169, 170, 175, 185, 191, 193, 194, 199, 209, 215, 217, 218, 223, 233, 239, 241, 242, 247, 257, 263, 265, 266
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2013

Keywords

Comments

A089911(a(n)) = 1.

Crossrefs

Programs

  • Haskell
    a227144 n = a227144_list !! (n-1)
    a227144_list = [1,2,7,17,23] ++ map (+ 24) a227144_list
    
  • Magma
    [n : n in [0..300] | n mod 24 in [1, 2, 7, 17, 23]]; // Wesley Ivan Hurt, Dec 26 2016
    
  • Maple
    A227144:=n->24*floor(n/5)+[1, 2, 7, 17, 23][(n mod 5)+1]: seq(A227144(n), n=0..100); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Select[Range[500], MemberQ[{1, 2, 7, 17, 23}, Mod[#, 24]] &] (* Wesley Ivan Hurt, Dec 26 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{1,2,7,17,23,25},60] (* Harvey P. Dale, Dec 18 2019 *)
  • PARI
    Vec(x*(1+x)*(x^4 +5*x^3 +5*x^2 +1)/((x^4 +x^3 +x^2 +x +1)*(x-1)^2) + O(x^50)) \\ G. C. Greubel, Dec 26 2016

Formula

G.f.: x*(1+x)*(x^4+5*x^3+5*x^2+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 26 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 110 - 6*(n mod 5) - 26*((n+1) mod 5) - ((n+2) mod 5) + 19*((n+3) mod 5) + 14*((n+4) mod 5))/25.
a(5k) = 24k-1, a(5k-1) = 24k-7, a(5k-2) = 24k-17, a(5k-3) = 24k-22, a(5k-4) = 24k-23. (End)
Showing 1-3 of 3 results.