cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227470 Least k such that n divides sigma(n*k).

Original entry on oeis.org

1, 3, 2, 3, 8, 1, 4, 7, 10, 4, 43, 2, 9, 2, 8, 21, 67, 5, 37, 6, 20, 43, 137, 5, 149, 9, 34, 1, 173, 4, 16, 21, 27, 64, 76, 22, 73, 37, 6, 3, 163, 10, 257, 43, 6, 137, 281, 11, 52, 76, 67, 45, 211, 17, 109, 4, 49, 173, 353, 2, 169, 8, 32, 93, 72, 27, 401, 67
Offset: 1

Views

Author

Alex Ratushnyak, Jul 12 2013

Keywords

Comments

Theorem: a(n) always exists.
Proof: If n is a power of a prime, say n = p^a, then, by Euler's generalization of Fermat's little theorem and the multiplicative property of sigma, one can take k = x^(p^a-p^(a-1)-1) where x is a different prime from p. Similarly. if n = p^a*q^b, then take k = x^(p^a-p^(a-1)-1)*y^(q^b-q^(b-1)-1) where {x,y} are primes different from {p,q}. And so on. These k's have the desired property, and so there is always at least one candidate for the minimal k. - N. J. A. Sloane, May 01 2016

Examples

			Least k such that 9 divides sigma(9*k) is k = 10: sigma(90) = 234 = 9*26. So a(9) = 10.
Least k such that 89 divides sigma(89*k) is k = 1024: sigma(89*1024) = 184230 = 89*2070. So a(89) = 1024.
		

Crossrefs

Indices of 1's: A007691.
See A272349 for the sequence [n*a(n)]. - N. J. A. Sloane, May 01 2016

Programs

  • Maple
    A227470 := proc(n)
        local k;
        for k from 1 do
            if modp(numtheory[sigma](k*n),n) =0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    lknds[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[1,k*n],n],k++];k]; Array[lknds,70] (* Harvey P. Dale, Jul 10 2014 *)
  • PARI
    a227470(n) = {k=1; while(sigma(n*k)%n != 0, k++); k} \\ Michael B. Porter, Jul 15 2013

Formula

a(n) = A272349(n)/n. - R. J. Mathar, May 06 2016

A245774 Numbers k that divide 3*sigma(k).

Original entry on oeis.org

1, 3, 6, 12, 28, 84, 120, 234, 270, 496, 672, 1080, 1488, 1638, 6048, 6552, 8128, 24384, 30240, 32760, 35640, 199584, 435708, 523776, 2142720, 2178540, 4713984, 12999168, 18506880, 23569920, 33550336, 36197280, 45532800
Offset: 1

Views

Author

Jaroslav Krizek, Aug 26 2014

Keywords

Comments

Numbers k that divide 3*A000203(k).
Supersequence of A007691 and A245775.
Union of A007691 and 3*A227303. - Robert Israel, Aug 26 2014

Examples

			Number 12 is in the sequence because 12 divides 3*sigma(12) = 3*28.
		

Crossrefs

Cf. A000203 (sum of divisors), A007691 (multiply-perfect numbers).
Cf. A227303 (n divides sigma(3n)), A245775 (denominator(sigma(n)/n) = 3).
Cf. A272027 (3*sigma(n)).

Programs

  • Magma
    [n: n in [1..3000000] | Denominator(3*(SumOfDivisors(n))/n) eq 1]
    
  • Maple
    select(n -> 3*numtheory:-sigma(n) mod n = 0, [$1..10^6]); # Robert Israel, Aug 26 2014
  • Mathematica
    a245774[n_Integer] := Select[Range[n], Divisible[3*DivisorSigma[1, #], #] == True &]; a245774[10^7] (* Michael De Vlieger, Aug 27 2014 *)
  • PARI
    for(n=1,10^9,if((3*sigma(n))%n==0,print1(n,", "))) \\ Derek Orr, Aug 26 2014

A341623 Numbers k such that sigma(3*k) = 8*k.

Original entry on oeis.org

28, 90, 496, 546, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2021

Keywords

Comments

Every perfect number P greater than 6 (so, P is not divisible by 3) will be found in this sequence. Proof: sigma(3*P) = sigma(3)*sigma(P) = 4*(2*P) = 8*P. - Timothy L. Tiffin, Aug 26 2021
Solutions are integers y/3 where sigma(y)/y = 8/3. - Michel Marcus, Aug 27 2021

Examples

			546 is a term, since sigma(3*546) = sigma(1638) = 4368 = 8*546. - _Timothy L. Tiffin_, Aug 26 2021
		

Crossrefs

Cf. A000396 (subsequence, apart from its terms that are divisible by 3).
Subsequence of A005101 and A227303.

Programs

  • Mathematica
    Select[Range[5*10^9], DivisorSigma[1, 3*#] == 8*# &] (* Timothy L. Tiffin, Aug 26 2021 *)
    Do[If[DivisorSigma[1, 3*k] == 8*k, Print[k]], {k, 5*10^9}] (* Timothy L. Tiffin, Aug 26 2021 *)

Extensions

a(7)-a(8) from Martin Ehrenstein, Mar 06 2021
a(9)-a(10) from Michel Marcus, Aug 27 2021
Showing 1-3 of 3 results.