A227470 Least k such that n divides sigma(n*k).
1, 3, 2, 3, 8, 1, 4, 7, 10, 4, 43, 2, 9, 2, 8, 21, 67, 5, 37, 6, 20, 43, 137, 5, 149, 9, 34, 1, 173, 4, 16, 21, 27, 64, 76, 22, 73, 37, 6, 3, 163, 10, 257, 43, 6, 137, 281, 11, 52, 76, 67, 45, 211, 17, 109, 4, 49, 173, 353, 2, 169, 8, 32, 93, 72, 27, 401, 67
Offset: 1
Keywords
Examples
Least k such that 9 divides sigma(9*k) is k = 10: sigma(90) = 234 = 9*26. So a(9) = 10. Least k such that 89 divides sigma(89*k) is k = 1024: sigma(89*1024) = 184230 = 89*2070. So a(89) = 1024.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
A227470 := proc(n) local k; for k from 1 do if modp(numtheory[sigma](k*n),n) =0 then return k; end if; end do: end proc: # R. J. Mathar, May 06 2016
-
Mathematica
lknds[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[1,k*n],n],k++];k]; Array[lknds,70] (* Harvey P. Dale, Jul 10 2014 *)
-
PARI
a227470(n) = {k=1; while(sigma(n*k)%n != 0, k++); k} \\ Michael B. Porter, Jul 15 2013
Formula
a(n) = A272349(n)/n. - R. J. Mathar, May 06 2016
Comments