cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227327 Number of non-equivalent ways to choose two points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 1, 4, 10, 22, 41, 72, 116, 180, 265, 380, 526, 714, 945, 1232, 1576, 1992, 2481, 3060, 3730, 4510, 5401, 6424, 7580, 8892, 10361, 12012, 13846, 15890, 18145, 20640, 23376, 26384, 29665, 33252, 37146, 41382, 45961, 50920, 56260, 62020, 68201, 74844
Offset: 1

Views

Author

Heinrich Ludwig, Jul 07 2013

Keywords

Comments

The sequence is an alternating composition of A178073 and A071244: a(n) = 2*A071244((n+1)/2) if n is odd, otherwise a(n) = A178073(n/2).

Examples

			for n = 3 there are the following 4 choices of 2 points (X) (rotations and reflections being ignored):
     X         X         X         .
    X .       . .       . .       X X
   . . .     X . .     . X .     . . .
		

Crossrefs

Corresponding questions about the number of ways in a square grid are treated by A083374 (2 points) and A178208 (3 points).

Programs

  • Mathematica
    Table[b = n^4 + 2*n^3 + 8*n^2; If[EvenQ[n], c = b - 8*n, c = b - 2*n - 9]; c/48, {n, 43}] (* T. D. Noe, Jul 09 2013 *)
    CoefficientList[Series[-x (x^3 - x^2 + x + 1) / ((x - 1)^5  (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 02 2013 *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,4,10,22,41,72},50] (* Harvey P. Dale, May 11 2019 *)

Formula

a(n) = (n^4 + 2*n^3 + 8*n^2 - 8*n )/48; if n even.
a(n) = (n^4 + 2*n^3 + 8*n^2 - 2*n - 9)/48; if n odd.
G.f.: -x^2*(x^3-x^2+x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Jul 12 2013