cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227413 a(1)=1, a(2n)=nthprime(a(n)), a(2n+1)=nthcomposite(a(n)), where nthprime = A000040, nthcomposite = A002808.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 9, 5, 8, 13, 12, 17, 14, 23, 16, 11, 10, 19, 15, 41, 22, 37, 21, 59, 27, 43, 24, 83, 35, 53, 26, 31, 20, 29, 18, 67, 30, 47, 25, 179, 58, 79, 34, 157, 54, 73, 33, 277, 82, 103, 40, 191, 62, 89, 36, 431, 114, 149, 51, 241, 75, 101, 39, 127, 46
Offset: 1

Views

Author

Antti Karttunen, Jul 10 2013

Keywords

Comments

Inverse permutation of A135141.
Shares with A073846 the property that the other bisection consists of just primes and the other bisection of just nonprimes.

Crossrefs

Similarly constructed permutations: A227402, A227404, A227410, A227412. Cf. also A073846, A209636.

Programs

  • Haskell
    import Data.List (transpose)
    a227413 n = a227413_list !! (n-1)
    a227413_list = 1 : concat (transpose [map a000040 a227413_list,
                                          map a002808 a227413_list])
    -- Reinhard Zumkeller, Jan 29 2014

Formula

a(1)=1, a(2n) = A000040(a(n)), a(2n+1) = A002808(a(n)).
A007097(n) = a(A000079(n)).

A226031 Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
Offset: 0

Views

Author

Alois P. Heinz, May 23 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,     1,      1,      1,       1, ...
  0,   1,     2,      3,      4,       5, ...
  0,   4,    16,     36,     64,     100, ...
  0,  22,   161,    525,   1222,    2360, ...
  0, 130,  1716,   8086,  24616,   58730, ...
  0, 791, 18832, 128248, 510664, 1505205, ...
		

Crossrefs

Columns k=0-2 give: A000007, A088536, A226012.
Rows n=0-2 give: A000012, A001477, A016742.
Main diagonal gives: A227402.
Cf. A071920.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1.
A(n,k) = A071921(n,k*n).

A227406 Number of unimodal functions f:[n]->[2^n].

Original entry on oeis.org

1, 2, 16, 372, 24616, 5014592, 3349471840, 7649590386464, 61356625102897216, 1758844330913892684288, 182379122144778004351027200, 69026760045145802122822210022400, 96048744530120196897251255933762037760, 494360393380904255996973467025921794482614272
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> sum(binomial(n+2*j-1, 2*j), j=0..2^n-1):
    seq(a(n), n=0..20);
  • Mathematica
    Table[Sum[Binomial[n+2*j-1,2*j],{j,0,2^n-1}],{n,0,15}] (* Vaclav Kotesovec, Sep 22 2013 *)

Formula

a(n) = Sum_{j=0..2^n-1} C(n+2*j-1,2*j).
a(n) = A071921(n,2^n).
a(n) ~ 2^(n^2+n-1)/n!. - Vaclav Kotesovec, Sep 22 2013
Showing 1-3 of 3 results.