cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227413 a(1)=1, a(2n)=nthprime(a(n)), a(2n+1)=nthcomposite(a(n)), where nthprime = A000040, nthcomposite = A002808.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 9, 5, 8, 13, 12, 17, 14, 23, 16, 11, 10, 19, 15, 41, 22, 37, 21, 59, 27, 43, 24, 83, 35, 53, 26, 31, 20, 29, 18, 67, 30, 47, 25, 179, 58, 79, 34, 157, 54, 73, 33, 277, 82, 103, 40, 191, 62, 89, 36, 431, 114, 149, 51, 241, 75, 101, 39, 127, 46
Offset: 1

Views

Author

Antti Karttunen, Jul 10 2013

Keywords

Comments

Inverse permutation of A135141.
Shares with A073846 the property that the other bisection consists of just primes and the other bisection of just nonprimes.

Crossrefs

Similarly constructed permutations: A227402, A227404, A227410, A227412. Cf. also A073846, A209636.

Programs

  • Haskell
    import Data.List (transpose)
    a227413 n = a227413_list !! (n-1)
    a227413_list = 1 : concat (transpose [map a000040 a227413_list,
                                          map a002808 a227413_list])
    -- Reinhard Zumkeller, Jan 29 2014

Formula

a(1)=1, a(2n) = A000040(a(n)), a(2n+1) = A002808(a(n)).
A007097(n) = a(A000079(n)).

A227411 Palindromic prime numbers representing a date in "condensed European notation" DDMMYY.

Original entry on oeis.org

10301, 10501, 10601, 30103, 30203, 30403, 30703, 30803, 31013, 70207, 70507, 70607, 90709, 91019
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 22 2013

Keywords

Comments

For February, the number of days will be 28 only, as year cannot be a leap year for DDMMYY to be a prime number.
The sequence is finite, with 14 terms. The largest term is a(14)=91019.
There are no 6-digit solutions - the month must be 11 and the day cannot start with a 0 or a 2. Nor can the day start with a 1 because this makes the palindrome of the form 1x11x1 - divisible by 1001. This leaves only 301103, which is 11*31*883, so not prime. - Jon Perry, Sep 23 2013

Examples

			a(1)=10103 is prime and represents a date in DDMMYY format as 010103.
		

Crossrefs

Programs

  • Mathematica
    palindromicQ[n_] := TrueQ[IntegerDigits[n] == Reverse[IntegerDigits[n]]]; t = {}; Do[If[m < 8, If[OddQ[m], b = 31, If[m == 2, b = 28, b = 30]], If[OddQ[m], b = 30, b = 31]]; Do[a = 100 m + y + 10000 d; If[PrimeQ[a] && palindromicQ[a], AppendTo[t, a]], {d, 1, b}], {m, 1, 12}, {y, 1, 99}]; Union[t]

Extensions

Incorrect a(15)-a(32) from Vincenzo Librandi, Sep 23 2013 removed. - Jon Perry, Sep 24 2013
Showing 1-2 of 2 results.