A227414 Number of ordered n-tuples of subsets of {1,2,...,n} which satisfy the conditions in Hall's Marriage Problem.
1, 1, 7, 247, 37823, 23191071, 54812742655, 494828369491583
Offset: 0
Examples
a(2) = 7 because we have: 1: ({1}, {2}); 2: ({1}, {1,2}); 3: ({2}, {1}); 4: ({2}, {1,2}); 5: ({1,2}, {1}); 6: ({1,2}, {2}); 7: ({1,2}, {1,2}).
Links
- F. Hivert, J. D. Mitchell, F. L. Smith, and W. A. Wilson, Minimal generating sets for matrix monoids, arXiv:2012.10323 [math.RA], 2020, p. 2.
- Alexander Postnikov, Permutohedra, associahedra, and beyond, 2005, arXiv:math/0507163 [math.CO], 2005.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- Wikipedia, Hall's marriage theorem
Programs
-
Mathematica
f[list_]:=Apply[And,Flatten[Table[Map[Length[#]>=n&,Map[Apply[Union,#]&, Subsets[list,{n}]]],{n,1,Length[list]}]]]; Table[Total[Boole[Map[f, Tuples[Subsets[n],n]]]],{n,1,4}]
Formula
a(n) = Sum_{k=1..n!} A089479(n,k). - Geoffrey Critzer, Dec 20 2023
Extensions
a(5) from James Mitchell, Nov 13 2015
a(6) from James Mitchell, Nov 16 2015
a(7) from Noam Zeilberger, Jun 04 2019
a(0)=1 prepended by Alois P. Heinz, Dec 19 2023
Comments