A088672
Number of n X n (0,1)-matrices with zero permanent.
Original entry on oeis.org
0, 1, 9, 265, 27713, 10363361, 13906734081, 68121583929729
Offset: 0
-
a[ n_] := Count[Table[Permanent[Partition[a, n]], {a, Tuples[{0, 1}, n^2]}], 0]; (* Michael Somos, Aug 05 2018 *)
A089479
Triangle T(n,k) read by rows, where T(n,k) = number of times the permanent of a real n X n (0,1)-matrix takes the value k, for n >= 0, 0 <= k <= n!.
Original entry on oeis.org
0, 1, 1, 1, 9, 6, 1, 265, 150, 69, 18, 9, 0, 1, 27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288, 96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1, 10363361, 3513720, 4339440, 2626800, 3015450, 1451400, 1872800, 962400, 1295700, 425400, 873000
Offset: 0
Triangle begins:
0, 1;
1, 1;
9, 6, 1;
265, 150, 69, 18, 9, 0, 1;
27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288,
96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1;
...
T(n,0) =
A088672(n), T(n,1) =
A089482(n). The n-th row of the table contains
A087983(n) nonzero entries. For n>2
A089477(n) gives the position of the first zero entry in the n-th row.
Cf.
A089480 (occurrence counts for permanents of non-singular (0,1)-matrices),
A089481 (occurrence counts for permanents of singular (0,1)-matrices).
A089482
Number of real {0,1}-matrices having permanent = 1.
Original entry on oeis.org
1, 1, 6, 150, 13032, 3513720, 2722682160, 5739447495600, 31598877919109760, 440333998013384657280, 15150599165671354541318400, 1261508968034974650352062240000, 250009928097136435131869478983500800, 116299581308873767293693697630883742796800
Offset: 0
a(2) = 6 because there are 6 matrices ((1,0),(0,1)), ((0,1),(1,0)), ((0,1),(1,1)), ((1,0),(1,1)), ((1,1),(0,1)), ((1,1),(1,0)) with permanent = 1.
Cf.
A088672 number of (0,1)-matrices with zero permanent,
A089479 occurrence counts for permanents of all (0,1)-matrices,
A089480 occurrence counts for permanents of non-singular (0,1)-matrices.
-
b:= proc(n) option remember; `if`(n=0, 1, add((-1)^(k+1)*
binomial(n, k)*2^(k*(n-k))*b(n-k), k=1..n))
end:
a:= n-> n!*b(n):
seq(a(n), n=0..14); # Alois P. Heinz, Jun 27 2023
-
A003024[n_] := A003024[n] = If[n == 0 || n == 1, 1, Sum[-(-1)^k*
Binomial[n, k]*2^(k*(n - k))*A003024[n - k], {k, 1, n}]];
a[n_] := n! * A003024[n];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Sep 20 2024 *)
A342811
Volume of the permutohedron obtained from the coordinates 1, 2, 4, ..., 2^(n-1), multiplied by (n-1)!.
Original entry on oeis.org
1, 13, 1009, 354161, 496376001, 2632501072321, 52080136110870785, 3872046158193220660993, 1099175272489026844687825921, 1210008580962784935280673680079873, 5225407816779297641534116390319222362113
Offset: 2
-
a[n_] := Sum[(p.(2^Range[0, n-1]))^(n-1) / Times @@ Differences[p], {p, Permutations@Range@n}];
Table[a[n], {n, 2, 8}]
A342812
Volume of the (n-1)-dimensional associahedron in the Loday realization, multiplied by (n-1)!.
Original entry on oeis.org
1, 1, 7, 142, 5895, 417201, 45046558, 6891812712, 1417730229765, 377158121463025
Offset: 1
-
a[n_] := With[{npr = Subsets[Span @@ Range@n, {2}]}, Sum[With[{ip = Ordering@p}, Total[-p[[Table[Min@ip[[ij]], {ij, npr}]]]]^(n - 1)] / Times @@ Differences[p], {p, Permutations@Range@n}]];
Table[a[n], {n, 8}]
Showing 1-5 of 5 results.
Comments