cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.

Original entry on oeis.org

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0

Views

Author

Keywords

Comments

Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)

Examples

			For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.

Crossrefs

Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.

Programs

  • Maple
    p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
    Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *)
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009

Formula

a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016

A088672 Number of n X n (0,1)-matrices with zero permanent.

Original entry on oeis.org

0, 1, 9, 265, 27713, 10363361, 13906734081, 68121583929729
Offset: 0

Views

Author

Michael Somos, Oct 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := Count[Table[Permanent[Partition[a, n]], {a, Tuples[{0, 1}, n^2]}], 0]; (* Michael Somos, Aug 05 2018 *)

Formula

a(n) is asymptotic to n*(2^(n^2 - n + 1)). [Everett and Stein]
a(n) = A002416(n) - A227414(n). - Geoffrey Critzer, Dec 19 2023

Extensions

a(5) from Jaap Spies, Nov 02 2003
a(6) from Gordon F. Royle, Nov 03 2003
a(7) added by Geoffrey Critzer, Dec 19 2023 after Noam Zeilberger in A227414.
a(0)=0 prepended by Alois P. Heinz, Dec 19 2023

A089479 Triangle T(n,k) read by rows, where T(n,k) = number of times the permanent of a real n X n (0,1)-matrix takes the value k, for n >= 0, 0 <= k <= n!.

Original entry on oeis.org

0, 1, 1, 1, 9, 6, 1, 265, 150, 69, 18, 9, 0, 1, 27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288, 96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1, 10363361, 3513720, 4339440, 2626800, 3015450, 1451400, 1872800, 962400, 1295700, 425400, 873000
Offset: 0

Views

Author

Hugo Pfoertner, Nov 05 2003

Keywords

Comments

The last element of each row is 1, corresponding to the n X n "all 1" matrix with permanent = n!. The first 4 rows were provided by Wouter Meeussen. The 6th row was computed by Gordon F. Royle: 13906734081, 2722682160, 4513642920, 3177532800, 4466769300, 2396826720, 3710999520, 2065521600, 3253760550, 1468314000, 2641593600, 1350475200, 2210277600, 1034061120,... .

Examples

			Triangle begins:
    0,     1;
    1,     1;
    9,     6,     1;
  265,   150,    69,   18,    9,    0,    1;
27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288,
                   96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

T(n,0) = A088672(n), T(n,1) = A089482(n). The n-th row of the table contains A087983(n) nonzero entries. For n>2 A089477(n) gives the position of the first zero entry in the n-th row.
Cf. A089480 (occurrence counts for permanents of non-singular (0,1)-matrices), A089481 (occurrence counts for permanents of singular (0,1)-matrices).
Cf. A000290, A038507 (row lengths), A002416 (row sums).

Formula

From Geoffrey Critzer, Dec 20 2023: (Start)
Sum_{k=1..n!} T(n,k) = A227414(n).
For n>2, T(n,n!-(n-1)!) = n^2, the number of matrices with exactly one 0 entry. (End)

Extensions

Edited by Alois P. Heinz, Dec 20 2023

A227414 Number of ordered n-tuples of subsets of {1,2,...,n} which satisfy the conditions in Hall's Marriage Problem.

Original entry on oeis.org

1, 1, 7, 247, 37823, 23191071, 54812742655, 494828369491583
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2013

Keywords

Comments

In a group of n women and n men, each woman selects a subset of men that she would happily marry. Hall's marriage problem gives the conditions on the subsets so that every woman can become happily married.
a(n)/2^(n^2) is the probability that if the subsets are selected at random then all the women can be happy.
Equivalently, a(n) is the number of n x n {0,1} matrices such that if in any arbitrarily selected r rows we note the columns that have at least one 1 in the selected rows then the number of such columns must not be less than r.

Examples

			a(2) = 7 because we have:
1: ({1}, {2});
2: ({1}, {1,2});
3: ({2}, {1});
4: ({2}, {1,2});
5: ({1,2}, {1});
6: ({1,2}, {2});
7: ({1,2}, {1,2}).
		

Crossrefs

Programs

  • Mathematica
    f[list_]:=Apply[And,Flatten[Table[Map[Length[#]>=n&,Map[Apply[Union,#]&, Subsets[list,{n}]]],{n,1,Length[list]}]]]; Table[Total[Boole[Map[f, Tuples[Subsets[n],n]]]],{n,1,4}]

Formula

a(n) = A002416(n) - A088672(n).
a(n) = Sum_{k=1..n!} A089479(n,k). - Geoffrey Critzer, Dec 20 2023

Extensions

a(5) from James Mitchell, Nov 13 2015
a(6) from James Mitchell, Nov 16 2015
a(7) from Noam Zeilberger, Jun 04 2019
a(0)=1 prepended by Alois P. Heinz, Dec 19 2023

A119009 Number of n X n real symmetric (0,1)-matrices with permanent = 1.

Original entry on oeis.org

1, 4, 22, 286, 5126, 190096, 9477868, 923926396, 118222774300
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A052655 a(2) = 6, otherwise a(n) = n*n!.

Original entry on oeis.org

0, 1, 6, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) = number of real non-singular (0,1)-matrices of order n having maximal permanent = A000255(n). Proof: [W. Edwin Clark and Richard Brualdi] The maximum permanent is per A where A has all 1's except for n-1 0's on the main diagonal. By Corollary 4.4 in the Brualdi et al. reference for n >= 4 any n X n (0,1)-matrix B with per B = per A can be obtained from A by permuting rows and columns. Since there are n ways to place the single 1 on the main diagonal and then n! ways to permute the distinct rows, a(n) = n*n! if n >=4. Direct computation shows this also holds for n = 1 and 3. - W. Edwin Clark, Nov 15 2003

Examples

			a(2)=6 because there are 6 (0,1)-matrices with nonzero determinant having permanent=1. See example in A089482. The (0,1)-matrix with maximal permanent=2 ((1,1),(1,1)) has det=0.
		

Crossrefs

Cf. A000255. A089480 gives occurrence counts for permanents of non-singular (0, 1)-matrices, A051752 number of (0, 1)-matrices with maximal determinant A003432.
Essentially the same as A001563.

Programs

  • Maple
    spec := [S,{S=Prod(Z,Union(Z,Prod(Sequence(Z),Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0,1,6},Table[n*n!,{n,3,20}]] (* Harvey P. Dale, Apr 20 2012 *)

Formula

E.g.f.: x*(-2*x^2+x^3+x+1)/(-1+x)^2.

A342598 Number of n X n 01-matrices with zero permanent from which it is possible to obtain a 01-matrix with permanent 1 by increasing a single element by 1.

Original entry on oeis.org

1, 8, 216, 19584, 5542200, 4551802560, 10225942680240, 60077099766620160
Offset: 1

Views

Author

Max Alekseyev, Mar 16 2021

Keywords

Comments

a(n) <= n * A089482(n).

Crossrefs

Extensions

a(8) from Max Alekseyev, Feb 10 2022

A342599 Number of n X n 01-matrices with permanent 0 from which it is possible to obtain a 01-matrix with permanent 1 by increasing a single element by 1, up to permutation of rows and columns.

Original entry on oeis.org

1, 3, 12, 74, 788, 16016, 658220, 55598924
Offset: 1

Views

Author

Max Alekseyev, Mar 16 2021

Keywords

Crossrefs

Extensions

a(8) from Max Alekseyev, Feb 10 2022
Showing 1-8 of 8 results.