cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227875 Fibonacci numbers which are perfect powers.

Original entry on oeis.org

0, 1, 8, 144
Offset: 1

Views

Author

Jean-François Alcover, Oct 25 2013

Keywords

Comments

Also, Fibonacci numbers which are products of Fibonacci numbers (each greater than 1 when the product is greater than 1 - see A235383). - Rick L. Shepherd, Feb 19 2014
The terms of the subsequence (1, 8, 144) are the Fibonacci numbers that are powerful numbers. - Robert C. Lyons, Jul 12 2016
Also Fibonacci numbers without any primitive divisors. See [Heuberger & Wagner]. - Michel Marcus, Aug 21 2016
It was proved (Bugeaud, Mignotte, and Siksek, 2006, p. 971) that the only perfect powers among the Fibonacci numbers and Lucas numbers are {0, 1, 8, 144} and {1, 4}, respectively. - Daniel Forgues, Apr 09 2018

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[0] = True; perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; Union[Select[Fibonacci /@ Range[0, 20], perfectPowerQ]]