A227875 Fibonacci numbers which are perfect powers.
0, 1, 8, 144
Offset: 1
Links
- Vladica Andrejic, On Fibonacci Powers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 17 (2006), 38-44.
- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad., 81, Ser. A (2005), pp. 17-20.
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Annals of Mathematics, 163 (2006), pp. 969-1018.
- Clemens Heuberger and Stephan Wagner, On the monoid generated by a Lucas sequence, arXiv:1606.02639 [math.NT], 2016. Gives the complement sequence w.r.t Fibonacci numbers.
- J. Mc Laughlin, Small prime powers in the Fibonacci sequence, arXiv:math/0110150 [math.NT] (2001).
- Attila Pethő, Diophantine properties of linear recursive sequences II, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 17:2 (2001), pp. 81-96.
Programs
-
Mathematica
perfectPowerQ[0] = True; perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; Union[Select[Fibonacci /@ Range[0, 20], perfectPowerQ]]
Comments