cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227999 a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-4) + a(n-3)^2) / a(n-6), a(0) = a(1) = a(2) = a(3) = 1, a(4) = a(5) = 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 11, 25, 97, 220, 1396, 6053, 30467, 249431, 1381913, 19850884, 160799404, 1942868797, 36133524445, 458473480079, 13521902050025, 220176552243482, 7006033824529130, 276364333237297549, 7470025110120086101, 460097285931623600317, 17010560092754291510533, 1372227474279446678113082
Offset: 0

Views

Author

Max Alekseyev, Dec 04 2013

Keywords

Comments

David Speyer showed (modulo some empirical relations) that all terms are integer.

Crossrefs

A variation of A006722.

Programs

  • Magma
    I:=[1,1,1,1,2,2]; [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-4) + Self(n-3)^2)/Self(n-6): n in [1..30]]; // G. C. Greubel, Aug 08 2018
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[4]==a[5]==2,a[n]==(a[n-1] a[n-5]+ a[n-2]a[n-4]+a[n-3]^2)/a[n-6]},a,{n,30}] (* Harvey P. Dale, Nov 11 2014 *)
    a[ n_] := Which[ Abs[n - 3/2] < 2, 1, Abs[n - 3/2] < 4, 2, n < 0, a[3 - n], True, (a[n - 1] a[n - 5] + a[n - 2] a[n - 4] + a[n - 3]^2) / a[n - 6]]; (* Michael Somos, Jul 24 2018 *)
  • PARI
    {a(n) = my(v); if( n<2, n = 3-n); n++; v = vector(n, i, 1+(i>4)); for(k=7, n, v[k] = (v[k-1]*v[k-5] + v[k-2]*v[k-4] + v[k-3]*v[k-3]) / v[k-6]); v[n]}; /* Michael Somos, Apr 25 2017 */
    

Formula

For n>=6, a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-4) + a(n-3)^2) / a(n-6).
a(n) = a(3-n) for all n in Z. - Michael Somos, Apr 25 2017
0 = a(n)*a(n+9) +a(n+1)*a(n+8) +a(n+2)*a(n+7) -a(n+3)*a(n+6) -32*a(n+4)*a(n+5) for all n in Z. - Michael Somos, Apr 25 2017
0 = a(n)*a(n+10) -a(n+1)*a(n+9) -32*a(n+2)*a(n+8) +17*a(n+3)*a(n+7) +49*a(n+4)*a(n+6) for all n in Z. - Michael Somos, Apr 25 2017
0 = +a(n)*a(n+11) -32*a(n+1)*a(n+10) -33*a(n+2)*a(n+9) -49*a(n+3)*a(n+8) +1007*a(n+5)*a(n+6) for all n in Z. - Michael Somos, Apr 25 2017