A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).
45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Charles Greathouse and Eric W. Weisstein, MathWorld: Odd perfect number
- Oliver Knill, The oldest open problem in mathematics, Handout for NEU Math Circle, December 2, 2007
- P. P. Nielsen, Odd Perfect Numbers Have At Least Nine Distinct Prime Factors, arXiv:math/0602485 [math.NT], 2006.
- Wikipedia, Perfect number: Odd perfect numbers
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.
Programs
-
Haskell
import Data.List (partition) a228058 n = a228058_list !! (n-1) a228058_list = filter f [1, 3 ..] where f x = length us == 1 && not (null vs) && fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1 where (us,vs) = partition (odd . snd) $ zip (a027748_row x) (a124010_row x) -- Reinhard Zumkeller, Aug 14 2013
-
Mathematica
nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
-
PARI
up_to = 1000; isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y)); A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(k
A228058(n), k++; v[k] = n)); (v); }; v228058 = A228058list(up_to); A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019
Formula
Extensions
Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019
Comments